misikoff commited on
Commit
814864c
1 Parent(s): 1205105

feat: add for sale listings and update new constructions notebook

Browse files
Files changed (26) hide show
  1. data/for_sale_listings/Metro_invt_fs_uc_sfr_month.csv +0 -0
  2. data/for_sale_listings/Metro_invt_fs_uc_sfr_sm_month.csv +0 -0
  3. data/for_sale_listings/Metro_invt_fs_uc_sfr_sm_week.csv +0 -0
  4. data/for_sale_listings/Metro_invt_fs_uc_sfr_week.csv +0 -0
  5. data/for_sale_listings/Metro_invt_fs_uc_sfrcondo_month.csv +0 -0
  6. data/for_sale_listings/Metro_invt_fs_uc_sfrcondo_sm_month.csv +0 -0
  7. data/for_sale_listings/Metro_invt_fs_uc_sfrcondo_sm_week.csv +0 -0
  8. data/for_sale_listings/Metro_invt_fs_uc_sfrcondo_week.csv +0 -0
  9. data/for_sale_listings/Metro_mlp_uc_sfr_month.csv +0 -0
  10. data/for_sale_listings/Metro_mlp_uc_sfr_sm_month.csv +0 -0
  11. data/for_sale_listings/Metro_mlp_uc_sfr_sm_week.csv +0 -0
  12. data/for_sale_listings/Metro_mlp_uc_sfr_week.csv +0 -0
  13. data/for_sale_listings/Metro_mlp_uc_sfrcondo_month.csv +0 -0
  14. data/for_sale_listings/Metro_mlp_uc_sfrcondo_sm_month.csv +0 -0
  15. data/for_sale_listings/Metro_mlp_uc_sfrcondo_sm_week.csv +0 -0
  16. data/for_sale_listings/Metro_mlp_uc_sfrcondo_week.csv +0 -0
  17. data/for_sale_listings/Metro_new_listings_uc_sfrcondo_month.csv +0 -0
  18. data/for_sale_listings/Metro_new_listings_uc_sfrcondo_sm_month.csv +0 -0
  19. data/for_sale_listings/Metro_new_listings_uc_sfrcondo_sm_week.csv +0 -0
  20. data/for_sale_listings/Metro_new_listings_uc_sfrcondo_week.csv +0 -0
  21. data/for_sale_listings/Metro_new_pending_uc_sfrcondo_month.csv +0 -0
  22. data/for_sale_listings/Metro_new_pending_uc_sfrcondo_sm_month.csv +0 -0
  23. data/for_sale_listings/Metro_new_pending_uc_sfrcondo_sm_week.csv +0 -0
  24. data/for_sale_listings/Metro_new_pending_uc_sfrcondo_week.csv +0 -0
  25. processors/process_for_sale_listings.ipynb +770 -0
  26. processors/process_new_constructions.ipynb +7 -7
data/for_sale_listings/Metro_invt_fs_uc_sfr_month.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_invt_fs_uc_sfr_sm_month.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_invt_fs_uc_sfr_sm_week.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_invt_fs_uc_sfr_week.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_invt_fs_uc_sfrcondo_month.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_invt_fs_uc_sfrcondo_sm_month.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_invt_fs_uc_sfrcondo_sm_week.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_invt_fs_uc_sfrcondo_week.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_mlp_uc_sfr_month.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_mlp_uc_sfr_sm_month.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_mlp_uc_sfr_sm_week.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_mlp_uc_sfr_week.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_mlp_uc_sfrcondo_month.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_mlp_uc_sfrcondo_sm_month.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_mlp_uc_sfrcondo_sm_week.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_mlp_uc_sfrcondo_week.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_new_listings_uc_sfrcondo_month.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_new_listings_uc_sfrcondo_sm_month.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_new_listings_uc_sfrcondo_sm_week.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_new_listings_uc_sfrcondo_week.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_new_pending_uc_sfrcondo_month.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_new_pending_uc_sfrcondo_sm_month.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_new_pending_uc_sfrcondo_sm_week.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/for_sale_listings/Metro_new_pending_uc_sfrcondo_week.csv ADDED
The diff for this file is too large to render. See raw diff
 
processors/process_for_sale_listings.ipynb ADDED
@@ -0,0 +1,770 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 2,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import pandas as pd\n",
10
+ "import os"
11
+ ]
12
+ },
13
+ {
14
+ "cell_type": "code",
15
+ "execution_count": 3,
16
+ "metadata": {},
17
+ "outputs": [],
18
+ "source": [
19
+ "DATA_DIR = \"../data\"\n",
20
+ "PROCESSED_DIR = \"../processed/\"\n",
21
+ "FACET_DIR = \"for_sale_listings/\"\n",
22
+ "FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)\n",
23
+ "FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": 7,
29
+ "metadata": {},
30
+ "outputs": [
31
+ {
32
+ "name": "stdout",
33
+ "output_type": "stream",
34
+ "text": [
35
+ "processing Metro_new_pending_uc_sfrcondo_sm_month.csv\n",
36
+ "processing Metro_invt_fs_uc_sfrcondo_week.csv\n",
37
+ "processing Metro_mlp_uc_sfrcondo_week.csv\n",
38
+ "processing Metro_invt_fs_uc_sfr_month.csv\n",
39
+ "processing Metro_mlp_uc_sfr_sm_month.csv\n",
40
+ "processing Metro_new_pending_uc_sfrcondo_month.csv\n",
41
+ "processing Metro_mlp_uc_sfrcondo_sm_week.csv\n",
42
+ "processing Metro_invt_fs_uc_sfrcondo_month.csv\n",
43
+ "processing Metro_mlp_uc_sfr_sm_week.csv\n",
44
+ "processing Metro_mlp_uc_sfrcondo_month.csv\n",
45
+ "processing Metro_new_pending_uc_sfrcondo_sm_week.csv\n",
46
+ "processing Metro_invt_fs_uc_sfr_sm_week.csv\n",
47
+ "processing Metro_invt_fs_uc_sfr_sm_month.csv\n",
48
+ "processing Metro_mlp_uc_sfr_month.csv\n",
49
+ "processing Metro_new_listings_uc_sfrcondo_week.csv\n",
50
+ "processing Metro_mlp_uc_sfrcondo_sm_month.csv\n",
51
+ "processing Metro_invt_fs_uc_sfrcondo_sm_week.csv\n",
52
+ "processing Metro_new_listings_uc_sfrcondo_sm_week.csv\n",
53
+ "processing Metro_new_listings_uc_sfrcondo_month.csv\n",
54
+ "processing Metro_new_pending_uc_sfrcondo_week.csv\n",
55
+ "processing Metro_invt_fs_uc_sfr_week.csv\n",
56
+ "processing Metro_new_listings_uc_sfrcondo_sm_month.csv\n",
57
+ "processing Metro_mlp_uc_sfr_week.csv\n",
58
+ "processing Metro_invt_fs_uc_sfrcondo_sm_month.csv\n"
59
+ ]
60
+ },
61
+ {
62
+ "data": {
63
+ "text/html": [
64
+ "<div>\n",
65
+ "<style scoped>\n",
66
+ " .dataframe tbody tr th:only-of-type {\n",
67
+ " vertical-align: middle;\n",
68
+ " }\n",
69
+ "\n",
70
+ " .dataframe tbody tr th {\n",
71
+ " vertical-align: top;\n",
72
+ " }\n",
73
+ "\n",
74
+ " .dataframe thead th {\n",
75
+ " text-align: right;\n",
76
+ " }\n",
77
+ "</style>\n",
78
+ "<table border=\"1\" class=\"dataframe\">\n",
79
+ " <thead>\n",
80
+ " <tr style=\"text-align: right;\">\n",
81
+ " <th></th>\n",
82
+ " <th>RegionID</th>\n",
83
+ " <th>SizeRank</th>\n",
84
+ " <th>RegionName</th>\n",
85
+ " <th>RegionType</th>\n",
86
+ " <th>StateName</th>\n",
87
+ " <th>Home Type</th>\n",
88
+ " <th>Date</th>\n",
89
+ " <th>Median Listing Price</th>\n",
90
+ " <th>Median Listing Price (Smoothed)</th>\n",
91
+ " <th>New Listings</th>\n",
92
+ " <th>New Listings (Smoothed)</th>\n",
93
+ " <th>New Pending (Smoothed)</th>\n",
94
+ " <th>New Pending</th>\n",
95
+ " </tr>\n",
96
+ " </thead>\n",
97
+ " <tbody>\n",
98
+ " <tr>\n",
99
+ " <th>0</th>\n",
100
+ " <td>102001</td>\n",
101
+ " <td>0</td>\n",
102
+ " <td>United States</td>\n",
103
+ " <td>country</td>\n",
104
+ " <td>NaN</td>\n",
105
+ " <td>all homes</td>\n",
106
+ " <td>2018-01-06</td>\n",
107
+ " <td>NaN</td>\n",
108
+ " <td>NaN</td>\n",
109
+ " <td>NaN</td>\n",
110
+ " <td>NaN</td>\n",
111
+ " <td>NaN</td>\n",
112
+ " <td>24766.0</td>\n",
113
+ " </tr>\n",
114
+ " <tr>\n",
115
+ " <th>1</th>\n",
116
+ " <td>102001</td>\n",
117
+ " <td>0</td>\n",
118
+ " <td>United States</td>\n",
119
+ " <td>country</td>\n",
120
+ " <td>NaN</td>\n",
121
+ " <td>SFR</td>\n",
122
+ " <td>2018-01-13</td>\n",
123
+ " <td>259000.0</td>\n",
124
+ " <td>NaN</td>\n",
125
+ " <td>NaN</td>\n",
126
+ " <td>NaN</td>\n",
127
+ " <td>NaN</td>\n",
128
+ " <td>NaN</td>\n",
129
+ " </tr>\n",
130
+ " <tr>\n",
131
+ " <th>2</th>\n",
132
+ " <td>102001</td>\n",
133
+ " <td>0</td>\n",
134
+ " <td>United States</td>\n",
135
+ " <td>country</td>\n",
136
+ " <td>NaN</td>\n",
137
+ " <td>all homes</td>\n",
138
+ " <td>2018-01-13</td>\n",
139
+ " <td>259900.0</td>\n",
140
+ " <td>NaN</td>\n",
141
+ " <td>71177.0</td>\n",
142
+ " <td>NaN</td>\n",
143
+ " <td>NaN</td>\n",
144
+ " <td>35229.0</td>\n",
145
+ " </tr>\n",
146
+ " <tr>\n",
147
+ " <th>3</th>\n",
148
+ " <td>102001</td>\n",
149
+ " <td>0</td>\n",
150
+ " <td>United States</td>\n",
151
+ " <td>country</td>\n",
152
+ " <td>NaN</td>\n",
153
+ " <td>SFR</td>\n",
154
+ " <td>2018-01-20</td>\n",
155
+ " <td>259900.0</td>\n",
156
+ " <td>NaN</td>\n",
157
+ " <td>NaN</td>\n",
158
+ " <td>NaN</td>\n",
159
+ " <td>NaN</td>\n",
160
+ " <td>NaN</td>\n",
161
+ " </tr>\n",
162
+ " <tr>\n",
163
+ " <th>4</th>\n",
164
+ " <td>102001</td>\n",
165
+ " <td>0</td>\n",
166
+ " <td>United States</td>\n",
167
+ " <td>country</td>\n",
168
+ " <td>NaN</td>\n",
169
+ " <td>all homes</td>\n",
170
+ " <td>2018-01-20</td>\n",
171
+ " <td>259900.0</td>\n",
172
+ " <td>NaN</td>\n",
173
+ " <td>72625.0</td>\n",
174
+ " <td>NaN</td>\n",
175
+ " <td>NaN</td>\n",
176
+ " <td>38281.0</td>\n",
177
+ " </tr>\n",
178
+ " <tr>\n",
179
+ " <th>...</th>\n",
180
+ " <td>...</td>\n",
181
+ " <td>...</td>\n",
182
+ " <td>...</td>\n",
183
+ " <td>...</td>\n",
184
+ " <td>...</td>\n",
185
+ " <td>...</td>\n",
186
+ " <td>...</td>\n",
187
+ " <td>...</td>\n",
188
+ " <td>...</td>\n",
189
+ " <td>...</td>\n",
190
+ " <td>...</td>\n",
191
+ " <td>...</td>\n",
192
+ " <td>...</td>\n",
193
+ " </tr>\n",
194
+ " <tr>\n",
195
+ " <th>2398144</th>\n",
196
+ " <td>845172</td>\n",
197
+ " <td>769</td>\n",
198
+ " <td>Winfield, KS</td>\n",
199
+ " <td>msa</td>\n",
200
+ " <td>KS</td>\n",
201
+ " <td>all homes</td>\n",
202
+ " <td>2023-12-31</td>\n",
203
+ " <td>NaN</td>\n",
204
+ " <td>136233.0</td>\n",
205
+ " <td>NaN</td>\n",
206
+ " <td>28.0</td>\n",
207
+ " <td>NaN</td>\n",
208
+ " <td>24.0</td>\n",
209
+ " </tr>\n",
210
+ " <tr>\n",
211
+ " <th>2398145</th>\n",
212
+ " <td>845172</td>\n",
213
+ " <td>769</td>\n",
214
+ " <td>Winfield, KS</td>\n",
215
+ " <td>msa</td>\n",
216
+ " <td>KS</td>\n",
217
+ " <td>SFR</td>\n",
218
+ " <td>2024-01-06</td>\n",
219
+ " <td>NaN</td>\n",
220
+ " <td>131088.0</td>\n",
221
+ " <td>NaN</td>\n",
222
+ " <td>NaN</td>\n",
223
+ " <td>NaN</td>\n",
224
+ " <td>NaN</td>\n",
225
+ " </tr>\n",
226
+ " <tr>\n",
227
+ " <th>2398146</th>\n",
228
+ " <td>845172</td>\n",
229
+ " <td>769</td>\n",
230
+ " <td>Winfield, KS</td>\n",
231
+ " <td>msa</td>\n",
232
+ " <td>KS</td>\n",
233
+ " <td>SFR</td>\n",
234
+ " <td>2024-01-06</td>\n",
235
+ " <td>135450.0</td>\n",
236
+ " <td>NaN</td>\n",
237
+ " <td>NaN</td>\n",
238
+ " <td>NaN</td>\n",
239
+ " <td>NaN</td>\n",
240
+ " <td>NaN</td>\n",
241
+ " </tr>\n",
242
+ " <tr>\n",
243
+ " <th>2398147</th>\n",
244
+ " <td>845172</td>\n",
245
+ " <td>769</td>\n",
246
+ " <td>Winfield, KS</td>\n",
247
+ " <td>msa</td>\n",
248
+ " <td>KS</td>\n",
249
+ " <td>all homes</td>\n",
250
+ " <td>2024-01-06</td>\n",
251
+ " <td>128000.0</td>\n",
252
+ " <td>NaN</td>\n",
253
+ " <td>NaN</td>\n",
254
+ " <td>NaN</td>\n",
255
+ " <td>NaN</td>\n",
256
+ " <td>NaN</td>\n",
257
+ " </tr>\n",
258
+ " <tr>\n",
259
+ " <th>2398148</th>\n",
260
+ " <td>845172</td>\n",
261
+ " <td>769</td>\n",
262
+ " <td>Winfield, KS</td>\n",
263
+ " <td>msa</td>\n",
264
+ " <td>KS</td>\n",
265
+ " <td>all homes</td>\n",
266
+ " <td>2024-01-06</td>\n",
267
+ " <td>NaN</td>\n",
268
+ " <td>121488.0</td>\n",
269
+ " <td>NaN</td>\n",
270
+ " <td>NaN</td>\n",
271
+ " <td>NaN</td>\n",
272
+ " <td>NaN</td>\n",
273
+ " </tr>\n",
274
+ " </tbody>\n",
275
+ "</table>\n",
276
+ "<p>2398149 rows × 13 columns</p>\n",
277
+ "</div>"
278
+ ],
279
+ "text/plain": [
280
+ " RegionID SizeRank RegionName RegionType StateName Home Type \\\n",
281
+ "0 102001 0 United States country NaN all homes \n",
282
+ "1 102001 0 United States country NaN SFR \n",
283
+ "2 102001 0 United States country NaN all homes \n",
284
+ "3 102001 0 United States country NaN SFR \n",
285
+ "4 102001 0 United States country NaN all homes \n",
286
+ "... ... ... ... ... ... ... \n",
287
+ "2398144 845172 769 Winfield, KS msa KS all homes \n",
288
+ "2398145 845172 769 Winfield, KS msa KS SFR \n",
289
+ "2398146 845172 769 Winfield, KS msa KS SFR \n",
290
+ "2398147 845172 769 Winfield, KS msa KS all homes \n",
291
+ "2398148 845172 769 Winfield, KS msa KS all homes \n",
292
+ "\n",
293
+ " Date Median Listing Price Median Listing Price (Smoothed) \\\n",
294
+ "0 2018-01-06 NaN NaN \n",
295
+ "1 2018-01-13 259000.0 NaN \n",
296
+ "2 2018-01-13 259900.0 NaN \n",
297
+ "3 2018-01-20 259900.0 NaN \n",
298
+ "4 2018-01-20 259900.0 NaN \n",
299
+ "... ... ... ... \n",
300
+ "2398144 2023-12-31 NaN 136233.0 \n",
301
+ "2398145 2024-01-06 NaN 131088.0 \n",
302
+ "2398146 2024-01-06 135450.0 NaN \n",
303
+ "2398147 2024-01-06 128000.0 NaN \n",
304
+ "2398148 2024-01-06 NaN 121488.0 \n",
305
+ "\n",
306
+ " New Listings New Listings (Smoothed) New Pending (Smoothed) \\\n",
307
+ "0 NaN NaN NaN \n",
308
+ "1 NaN NaN NaN \n",
309
+ "2 71177.0 NaN NaN \n",
310
+ "3 NaN NaN NaN \n",
311
+ "4 72625.0 NaN NaN \n",
312
+ "... ... ... ... \n",
313
+ "2398144 NaN 28.0 NaN \n",
314
+ "2398145 NaN NaN NaN \n",
315
+ "2398146 NaN NaN NaN \n",
316
+ "2398147 NaN NaN NaN \n",
317
+ "2398148 NaN NaN NaN \n",
318
+ "\n",
319
+ " New Pending \n",
320
+ "0 24766.0 \n",
321
+ "1 NaN \n",
322
+ "2 35229.0 \n",
323
+ "3 NaN \n",
324
+ "4 38281.0 \n",
325
+ "... ... \n",
326
+ "2398144 24.0 \n",
327
+ "2398145 NaN \n",
328
+ "2398146 NaN \n",
329
+ "2398147 NaN \n",
330
+ "2398148 NaN \n",
331
+ "\n",
332
+ "[2398149 rows x 13 columns]"
333
+ ]
334
+ },
335
+ "execution_count": 7,
336
+ "metadata": {},
337
+ "output_type": "execute_result"
338
+ }
339
+ ],
340
+ "source": [
341
+ "# base cols RegionID,SizeRank,RegionName,RegionType,StateName\n",
342
+ "\n",
343
+ "exclude_columns = [\n",
344
+ " \"RegionID\",\n",
345
+ " \"SizeRank\",\n",
346
+ " \"RegionName\",\n",
347
+ " \"RegionType\",\n",
348
+ " \"StateName\",\n",
349
+ " \"Home Type\",\n",
350
+ "]\n",
351
+ "\n",
352
+ "batches = {\"mlp\": [], \"new_listings\": [], \"new_pending\": []}\n",
353
+ "\n",
354
+ "for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
355
+ " if filename.endswith(\".csv\"):\n",
356
+ " print(\"processing \" + filename)\n",
357
+ " cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
358
+ "\n",
359
+ " # ignore monthly data for now since it is redundant\n",
360
+ " if \"monthly\" in filename:\n",
361
+ " continue\n",
362
+ "\n",
363
+ " if \"sfrcondo\" in filename:\n",
364
+ " cur_df[\"Home Type\"] = \"all homes\"\n",
365
+ " elif \"sfr\" in filename:\n",
366
+ " cur_df[\"Home Type\"] = \"SFR\"\n",
367
+ " elif \"condo\" in filename:\n",
368
+ " cur_df[\"Home Type\"] = \"condo/co-op only\"\n",
369
+ "\n",
370
+ " # Identify columns to pivot\n",
371
+ " columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
372
+ "\n",
373
+ " smoothed = \"_sm_\" in filename\n",
374
+ "\n",
375
+ " if \"_mlp_\" in filename:\n",
376
+ " cur_df = pd.melt(\n",
377
+ " cur_df,\n",
378
+ " id_vars=exclude_columns,\n",
379
+ " value_vars=columns_to_pivot,\n",
380
+ " var_name=\"Date\",\n",
381
+ " value_name=(\n",
382
+ " \"Median Listing Price\"\n",
383
+ " if not smoothed\n",
384
+ " else \"Median Listing Price (Smoothed)\"\n",
385
+ " ),\n",
386
+ " )\n",
387
+ " batches[\"mlp\"].append(cur_df)\n",
388
+ "\n",
389
+ " elif \"_new_listings_\" in filename:\n",
390
+ " cur_df = pd.melt(\n",
391
+ " cur_df,\n",
392
+ " id_vars=exclude_columns,\n",
393
+ " value_vars=columns_to_pivot,\n",
394
+ " var_name=\"Date\",\n",
395
+ " value_name=(\n",
396
+ " \"New Listings\" if not smoothed else \"New Listings (Smoothed)\"\n",
397
+ " ),\n",
398
+ " )\n",
399
+ " batches[\"new_listings\"].append(cur_df)\n",
400
+ "\n",
401
+ " elif \"new_pending\" in filename:\n",
402
+ " cur_df = pd.melt(\n",
403
+ " cur_df,\n",
404
+ " id_vars=exclude_columns,\n",
405
+ " value_vars=columns_to_pivot,\n",
406
+ " var_name=\"Date\",\n",
407
+ " value_name=\"New Pending\" if not smoothed else \"New Pending (Smoothed)\",\n",
408
+ " )\n",
409
+ " batches[\"new_pending\"].append(cur_df)\n",
410
+ "\n",
411
+ "matching_cols = [\n",
412
+ " \"RegionID\",\n",
413
+ " \"Date\",\n",
414
+ " \"SizeRank\",\n",
415
+ " \"RegionName\",\n",
416
+ " \"RegionType\",\n",
417
+ " \"StateName\",\n",
418
+ " \"Home Type\",\n",
419
+ "]\n",
420
+ "\n",
421
+ "combined_batches = [pd.concat(cur_batch) for cur_batch in batches.values()]\n",
422
+ "\n",
423
+ "if len(combined_batches) > 0:\n",
424
+ " combined_df = combined_batches[0]\n",
425
+ " for batch in combined_batches[1:]:\n",
426
+ " combined_df = pd.merge(\n",
427
+ " combined_df,\n",
428
+ " batch,\n",
429
+ " on=matching_cols,\n",
430
+ " how=\"outer\",\n",
431
+ " )\n",
432
+ "\n",
433
+ "\n",
434
+ "combined_df"
435
+ ]
436
+ },
437
+ {
438
+ "cell_type": "code",
439
+ "execution_count": 6,
440
+ "metadata": {},
441
+ "outputs": [
442
+ {
443
+ "data": {
444
+ "text/html": [
445
+ "<div>\n",
446
+ "<style scoped>\n",
447
+ " .dataframe tbody tr th:only-of-type {\n",
448
+ " vertical-align: middle;\n",
449
+ " }\n",
450
+ "\n",
451
+ " .dataframe tbody tr th {\n",
452
+ " vertical-align: top;\n",
453
+ " }\n",
454
+ "\n",
455
+ " .dataframe thead th {\n",
456
+ " text-align: right;\n",
457
+ " }\n",
458
+ "</style>\n",
459
+ "<table border=\"1\" class=\"dataframe\">\n",
460
+ " <thead>\n",
461
+ " <tr style=\"text-align: right;\">\n",
462
+ " <th></th>\n",
463
+ " <th>Region ID</th>\n",
464
+ " <th>Size Rank</th>\n",
465
+ " <th>Region</th>\n",
466
+ " <th>Region Type</th>\n",
467
+ " <th>State</th>\n",
468
+ " <th>Home Type</th>\n",
469
+ " <th>Date</th>\n",
470
+ " <th>Median Listing Price</th>\n",
471
+ " <th>Median Listing Price (Smoothed)</th>\n",
472
+ " <th>New Listings</th>\n",
473
+ " <th>New Listings (Smoothed)</th>\n",
474
+ " <th>New Pending (Smoothed)</th>\n",
475
+ " <th>New Pending</th>\n",
476
+ " </tr>\n",
477
+ " </thead>\n",
478
+ " <tbody>\n",
479
+ " <tr>\n",
480
+ " <th>0</th>\n",
481
+ " <td>102001</td>\n",
482
+ " <td>0</td>\n",
483
+ " <td>United States</td>\n",
484
+ " <td>country</td>\n",
485
+ " <td>NaN</td>\n",
486
+ " <td>all homes</td>\n",
487
+ " <td>2018-01-06</td>\n",
488
+ " <td>NaN</td>\n",
489
+ " <td>NaN</td>\n",
490
+ " <td>NaN</td>\n",
491
+ " <td>NaN</td>\n",
492
+ " <td>NaN</td>\n",
493
+ " <td>24766.0</td>\n",
494
+ " </tr>\n",
495
+ " <tr>\n",
496
+ " <th>1</th>\n",
497
+ " <td>102001</td>\n",
498
+ " <td>0</td>\n",
499
+ " <td>United States</td>\n",
500
+ " <td>country</td>\n",
501
+ " <td>NaN</td>\n",
502
+ " <td>SFR</td>\n",
503
+ " <td>2018-01-13</td>\n",
504
+ " <td>259000.0</td>\n",
505
+ " <td>NaN</td>\n",
506
+ " <td>NaN</td>\n",
507
+ " <td>NaN</td>\n",
508
+ " <td>NaN</td>\n",
509
+ " <td>NaN</td>\n",
510
+ " </tr>\n",
511
+ " <tr>\n",
512
+ " <th>2</th>\n",
513
+ " <td>102001</td>\n",
514
+ " <td>0</td>\n",
515
+ " <td>United States</td>\n",
516
+ " <td>country</td>\n",
517
+ " <td>NaN</td>\n",
518
+ " <td>all homes</td>\n",
519
+ " <td>2018-01-13</td>\n",
520
+ " <td>259900.0</td>\n",
521
+ " <td>NaN</td>\n",
522
+ " <td>71177.0</td>\n",
523
+ " <td>NaN</td>\n",
524
+ " <td>NaN</td>\n",
525
+ " <td>35229.0</td>\n",
526
+ " </tr>\n",
527
+ " <tr>\n",
528
+ " <th>3</th>\n",
529
+ " <td>102001</td>\n",
530
+ " <td>0</td>\n",
531
+ " <td>United States</td>\n",
532
+ " <td>country</td>\n",
533
+ " <td>NaN</td>\n",
534
+ " <td>SFR</td>\n",
535
+ " <td>2018-01-20</td>\n",
536
+ " <td>259900.0</td>\n",
537
+ " <td>NaN</td>\n",
538
+ " <td>NaN</td>\n",
539
+ " <td>NaN</td>\n",
540
+ " <td>NaN</td>\n",
541
+ " <td>NaN</td>\n",
542
+ " </tr>\n",
543
+ " <tr>\n",
544
+ " <th>4</th>\n",
545
+ " <td>102001</td>\n",
546
+ " <td>0</td>\n",
547
+ " <td>United States</td>\n",
548
+ " <td>country</td>\n",
549
+ " <td>NaN</td>\n",
550
+ " <td>all homes</td>\n",
551
+ " <td>2018-01-20</td>\n",
552
+ " <td>259900.0</td>\n",
553
+ " <td>NaN</td>\n",
554
+ " <td>72625.0</td>\n",
555
+ " <td>NaN</td>\n",
556
+ " <td>NaN</td>\n",
557
+ " <td>38281.0</td>\n",
558
+ " </tr>\n",
559
+ " <tr>\n",
560
+ " <th>...</th>\n",
561
+ " <td>...</td>\n",
562
+ " <td>...</td>\n",
563
+ " <td>...</td>\n",
564
+ " <td>...</td>\n",
565
+ " <td>...</td>\n",
566
+ " <td>...</td>\n",
567
+ " <td>...</td>\n",
568
+ " <td>...</td>\n",
569
+ " <td>...</td>\n",
570
+ " <td>...</td>\n",
571
+ " <td>...</td>\n",
572
+ " <td>...</td>\n",
573
+ " <td>...</td>\n",
574
+ " </tr>\n",
575
+ " <tr>\n",
576
+ " <th>2398144</th>\n",
577
+ " <td>845172</td>\n",
578
+ " <td>769</td>\n",
579
+ " <td>Winfield, KS</td>\n",
580
+ " <td>msa</td>\n",
581
+ " <td>KS</td>\n",
582
+ " <td>all homes</td>\n",
583
+ " <td>2023-12-31</td>\n",
584
+ " <td>NaN</td>\n",
585
+ " <td>136233.0</td>\n",
586
+ " <td>NaN</td>\n",
587
+ " <td>28.0</td>\n",
588
+ " <td>NaN</td>\n",
589
+ " <td>24.0</td>\n",
590
+ " </tr>\n",
591
+ " <tr>\n",
592
+ " <th>2398145</th>\n",
593
+ " <td>845172</td>\n",
594
+ " <td>769</td>\n",
595
+ " <td>Winfield, KS</td>\n",
596
+ " <td>msa</td>\n",
597
+ " <td>KS</td>\n",
598
+ " <td>SFR</td>\n",
599
+ " <td>2024-01-06</td>\n",
600
+ " <td>NaN</td>\n",
601
+ " <td>131088.0</td>\n",
602
+ " <td>NaN</td>\n",
603
+ " <td>NaN</td>\n",
604
+ " <td>NaN</td>\n",
605
+ " <td>NaN</td>\n",
606
+ " </tr>\n",
607
+ " <tr>\n",
608
+ " <th>2398146</th>\n",
609
+ " <td>845172</td>\n",
610
+ " <td>769</td>\n",
611
+ " <td>Winfield, KS</td>\n",
612
+ " <td>msa</td>\n",
613
+ " <td>KS</td>\n",
614
+ " <td>SFR</td>\n",
615
+ " <td>2024-01-06</td>\n",
616
+ " <td>135450.0</td>\n",
617
+ " <td>NaN</td>\n",
618
+ " <td>NaN</td>\n",
619
+ " <td>NaN</td>\n",
620
+ " <td>NaN</td>\n",
621
+ " <td>NaN</td>\n",
622
+ " </tr>\n",
623
+ " <tr>\n",
624
+ " <th>2398147</th>\n",
625
+ " <td>845172</td>\n",
626
+ " <td>769</td>\n",
627
+ " <td>Winfield, KS</td>\n",
628
+ " <td>msa</td>\n",
629
+ " <td>KS</td>\n",
630
+ " <td>all homes</td>\n",
631
+ " <td>2024-01-06</td>\n",
632
+ " <td>128000.0</td>\n",
633
+ " <td>NaN</td>\n",
634
+ " <td>NaN</td>\n",
635
+ " <td>NaN</td>\n",
636
+ " <td>NaN</td>\n",
637
+ " <td>NaN</td>\n",
638
+ " </tr>\n",
639
+ " <tr>\n",
640
+ " <th>2398148</th>\n",
641
+ " <td>845172</td>\n",
642
+ " <td>769</td>\n",
643
+ " <td>Winfield, KS</td>\n",
644
+ " <td>msa</td>\n",
645
+ " <td>KS</td>\n",
646
+ " <td>all homes</td>\n",
647
+ " <td>2024-01-06</td>\n",
648
+ " <td>NaN</td>\n",
649
+ " <td>121488.0</td>\n",
650
+ " <td>NaN</td>\n",
651
+ " <td>NaN</td>\n",
652
+ " <td>NaN</td>\n",
653
+ " <td>NaN</td>\n",
654
+ " </tr>\n",
655
+ " </tbody>\n",
656
+ "</table>\n",
657
+ "<p>2398149 rows × 13 columns</p>\n",
658
+ "</div>"
659
+ ],
660
+ "text/plain": [
661
+ " Region ID Size Rank Region Region Type State Home Type \\\n",
662
+ "0 102001 0 United States country NaN all homes \n",
663
+ "1 102001 0 United States country NaN SFR \n",
664
+ "2 102001 0 United States country NaN all homes \n",
665
+ "3 102001 0 United States country NaN SFR \n",
666
+ "4 102001 0 United States country NaN all homes \n",
667
+ "... ... ... ... ... ... ... \n",
668
+ "2398144 845172 769 Winfield, KS msa KS all homes \n",
669
+ "2398145 845172 769 Winfield, KS msa KS SFR \n",
670
+ "2398146 845172 769 Winfield, KS msa KS SFR \n",
671
+ "2398147 845172 769 Winfield, KS msa KS all homes \n",
672
+ "2398148 845172 769 Winfield, KS msa KS all homes \n",
673
+ "\n",
674
+ " Date Median Listing Price Median Listing Price (Smoothed) \\\n",
675
+ "0 2018-01-06 NaN NaN \n",
676
+ "1 2018-01-13 259000.0 NaN \n",
677
+ "2 2018-01-13 259900.0 NaN \n",
678
+ "3 2018-01-20 259900.0 NaN \n",
679
+ "4 2018-01-20 259900.0 NaN \n",
680
+ "... ... ... ... \n",
681
+ "2398144 2023-12-31 NaN 136233.0 \n",
682
+ "2398145 2024-01-06 NaN 131088.0 \n",
683
+ "2398146 2024-01-06 135450.0 NaN \n",
684
+ "2398147 2024-01-06 128000.0 NaN \n",
685
+ "2398148 2024-01-06 NaN 121488.0 \n",
686
+ "\n",
687
+ " New Listings New Listings (Smoothed) New Pending (Smoothed) \\\n",
688
+ "0 NaN NaN NaN \n",
689
+ "1 NaN NaN NaN \n",
690
+ "2 71177.0 NaN NaN \n",
691
+ "3 NaN NaN NaN \n",
692
+ "4 72625.0 NaN NaN \n",
693
+ "... ... ... ... \n",
694
+ "2398144 NaN 28.0 NaN \n",
695
+ "2398145 NaN NaN NaN \n",
696
+ "2398146 NaN NaN NaN \n",
697
+ "2398147 NaN NaN NaN \n",
698
+ "2398148 NaN NaN NaN \n",
699
+ "\n",
700
+ " New Pending \n",
701
+ "0 24766.0 \n",
702
+ "1 NaN \n",
703
+ "2 35229.0 \n",
704
+ "3 NaN \n",
705
+ "4 38281.0 \n",
706
+ "... ... \n",
707
+ "2398144 24.0 \n",
708
+ "2398145 NaN \n",
709
+ "2398146 NaN \n",
710
+ "2398147 NaN \n",
711
+ "2398148 NaN \n",
712
+ "\n",
713
+ "[2398149 rows x 13 columns]"
714
+ ]
715
+ },
716
+ "execution_count": 6,
717
+ "metadata": {},
718
+ "output_type": "execute_result"
719
+ }
720
+ ],
721
+ "source": [
722
+ "final_df = combined_df\n",
723
+ "final_df = final_df.rename(\n",
724
+ " columns={\n",
725
+ " \"RegionID\": \"Region ID\",\n",
726
+ " \"SizeRank\": \"Size Rank\",\n",
727
+ " \"RegionName\": \"Region\",\n",
728
+ " \"RegionType\": \"Region Type\",\n",
729
+ " \"StateName\": \"State\",\n",
730
+ " }\n",
731
+ ")\n",
732
+ "\n",
733
+ "final_df"
734
+ ]
735
+ },
736
+ {
737
+ "cell_type": "code",
738
+ "execution_count": 49,
739
+ "metadata": {},
740
+ "outputs": [],
741
+ "source": [
742
+ "if not os.path.exists(FULL_PROCESSED_DIR_PATH):\n",
743
+ " os.makedirs(FULL_PROCESSED_DIR_PATH)\n",
744
+ "\n",
745
+ "final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
746
+ ]
747
+ }
748
+ ],
749
+ "metadata": {
750
+ "kernelspec": {
751
+ "display_name": "Python 3",
752
+ "language": "python",
753
+ "name": "python3"
754
+ },
755
+ "language_info": {
756
+ "codemirror_mode": {
757
+ "name": "ipython",
758
+ "version": 3
759
+ },
760
+ "file_extension": ".py",
761
+ "mimetype": "text/x-python",
762
+ "name": "python",
763
+ "nbconvert_exporter": "python",
764
+ "pygments_lexer": "ipython3",
765
+ "version": "3.12.2"
766
+ }
767
+ },
768
+ "nbformat": 4,
769
+ "nbformat_minor": 2
770
+ }
processors/process_new_constructions.ipynb CHANGED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 2,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
@@ -12,7 +12,7 @@
12
  },
13
  {
14
  "cell_type": "code",
15
- "execution_count": 3,
16
  "metadata": {},
17
  "outputs": [],
18
  "source": [
@@ -25,7 +25,7 @@
25
  },
26
  {
27
  "cell_type": "code",
28
- "execution_count": 56,
29
  "metadata": {},
30
  "outputs": [
31
  {
@@ -268,7 +268,7 @@
268
  "[49487 rows x 10 columns]"
269
  ]
270
  },
271
- "execution_count": 56,
272
  "metadata": {},
273
  "output_type": "execute_result"
274
  }
@@ -360,7 +360,7 @@
360
  },
361
  {
362
  "cell_type": "code",
363
- "execution_count": 57,
364
  "metadata": {},
365
  "outputs": [
366
  {
@@ -588,7 +588,7 @@
588
  "[49487 rows x 10 columns]"
589
  ]
590
  },
591
- "execution_count": 57,
592
  "metadata": {},
593
  "output_type": "execute_result"
594
  }
@@ -610,7 +610,7 @@
610
  },
611
  {
612
  "cell_type": "code",
613
- "execution_count": 58,
614
  "metadata": {},
615
  "outputs": [],
616
  "source": [
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 59,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
 
12
  },
13
  {
14
  "cell_type": "code",
15
+ "execution_count": 60,
16
  "metadata": {},
17
  "outputs": [],
18
  "source": [
 
25
  },
26
  {
27
  "cell_type": "code",
28
+ "execution_count": 61,
29
  "metadata": {},
30
  "outputs": [
31
  {
 
268
  "[49487 rows x 10 columns]"
269
  ]
270
  },
271
+ "execution_count": 61,
272
  "metadata": {},
273
  "output_type": "execute_result"
274
  }
 
360
  },
361
  {
362
  "cell_type": "code",
363
+ "execution_count": 62,
364
  "metadata": {},
365
  "outputs": [
366
  {
 
588
  "[49487 rows x 10 columns]"
589
  ]
590
  },
591
+ "execution_count": 62,
592
  "metadata": {},
593
  "output_type": "execute_result"
594
  }
 
610
  },
611
  {
612
  "cell_type": "code",
613
+ "execution_count": 63,
614
  "metadata": {},
615
  "outputs": [],
616
  "source": [