misikoff commited on
Commit
983c3a7
1 Parent(s): cf9e214

fix: simplify processors more

Browse files
processed/days_on_market/final.jsonl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1cf82e9ce68b4ebf991214a7de3fbc8f25de319da470741761d44d11d5cc89f3
3
- size 230154547
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52768ecdeb897b82c7fb783c3dde12d04b0fa68eea0adf6f60ad60a630d3cb85
3
+ size 232657387
processed/home_values_forecasts/final.jsonl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f0557666842cd52409b8f1509e1402270d649ddb9371f9992007422a807d29fa
3
- size 8185465
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae38d8b222b98347a9841ea8ca153cbb834af36a9dae7df6ad3326e64ad3723a
3
+ size 13922709
processors/days_on_market.ipynb CHANGED
@@ -2,19 +2,24 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 5,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
9
  "import pandas as pd\n",
10
  "import os\n",
11
  "\n",
12
- "from helpers import get_combined_df, coalesce_columns, get_df, save_final_df_as_jsonl"
 
 
 
 
 
13
  ]
14
  },
15
  {
16
  "cell_type": "code",
17
- "execution_count": 6,
18
  "metadata": {},
19
  "outputs": [],
20
  "source": [
@@ -27,16 +32,9 @@
27
  },
28
  {
29
  "cell_type": "code",
30
- "execution_count": 7,
31
  "metadata": {},
32
  "outputs": [
33
- {
34
- "name": "stdout",
35
- "output_type": "stream",
36
- "text": [
37
- "dict_values(['Mean Listings Price Cut Amount', 'Median Days on Pending', 'Median Days to Close', 'Percent Listings Price Cut'])\n"
38
- ]
39
- },
40
  {
41
  "data": {
42
  "text/html": [
@@ -131,7 +129,7 @@
131
  " <td>NaN</td>\n",
132
  " <td>SFR</td>\n",
133
  " <td>2018-01-27</td>\n",
134
- " <td>NaN</td>\n",
135
  " <td>0.047930</td>\n",
136
  " <td>13998.585612</td>\n",
137
  " <td>NaN</td>\n",
@@ -147,10 +145,10 @@
147
  " <td>NaN</td>\n",
148
  " <td>SFR</td>\n",
149
  " <td>2018-02-03</td>\n",
150
- " <td>NaN</td>\n",
151
  " <td>0.047622</td>\n",
152
  " <td>14120.035549</td>\n",
153
- " <td>NaN</td>\n",
154
  " <td>NaN</td>\n",
155
  " <td>NaN</td>\n",
156
  " </tr>\n",
@@ -256,75 +254,23 @@
256
  "</div>"
257
  ],
258
  "text/plain": [
259
- " RegionID SizeRank RegionName RegionType StateName \\\n",
260
- "0 102001 0 United States country NaN \n",
261
- "1 102001 0 United States country NaN \n",
262
- "2 102001 0 United States country NaN \n",
263
- "3 102001 0 United States country NaN \n",
264
- "4 102001 0 United States country NaN \n",
265
- "... ... ... ... ... ... \n",
266
- "586709 845172 769 Winfield, KS msa KS \n",
267
- "586710 845172 769 Winfield, KS msa KS \n",
268
- "586711 845172 769 Winfield, KS msa KS \n",
269
- "586712 845172 769 Winfield, KS msa KS \n",
270
- "586713 845172 769 Winfield, KS msa KS \n",
271
- "\n",
272
- " Home Type Date \\\n",
273
- "0 SFR 2018-01-06 \n",
274
- "1 SFR 2018-01-13 \n",
275
- "2 SFR 2018-01-20 \n",
276
- "3 SFR 2018-01-27 \n",
277
- "4 SFR 2018-02-03 \n",
278
- "... ... ... \n",
279
- "586709 all homes (SFR + Condo) 2024-01-06 \n",
280
- "586710 all homes (SFR + Condo) 2024-01-13 \n",
281
- "586711 all homes (SFR + Condo) 2024-01-20 \n",
282
- "586712 all homes (SFR + Condo) 2024-01-27 \n",
283
- "586713 all homes (SFR + Condo) 2024-02-03 \n",
284
- "\n",
285
- " Mean Listings Price Cut Amount (Smoothed) Percent Listings Price Cut \\\n",
286
- "0 NaN NaN \n",
287
- "1 NaN 0.049042 \n",
288
- "2 NaN 0.044740 \n",
289
- "3 NaN 0.047930 \n",
290
- "4 NaN 0.047622 \n",
291
- "... ... ... \n",
292
- "586709 NaN 0.094017 \n",
293
- "586710 NaN 0.070175 \n",
294
- "586711 NaN 0.043478 \n",
295
- "586712 NaN 0.036697 \n",
296
- "586713 NaN 0.077670 \n",
297
- "\n",
298
- " Mean Listings Price Cut Amount Percent Listings Price Cut (Smoothed) \\\n",
299
- "0 13508.368375 NaN \n",
300
- "1 14114.788383 NaN \n",
301
- "2 14326.128956 NaN \n",
302
- "3 13998.585612 NaN \n",
303
- "4 14120.035549 NaN \n",
304
- "... ... ... \n",
305
- "586709 NaN 0.037378 \n",
306
- "586710 NaN 0.043203 \n",
307
- "586711 NaN 0.054073 \n",
308
- "586712 NaN 0.061092 \n",
309
- "586713 NaN 0.057005 \n",
310
- "\n",
311
- " Median Days on Pending (Smoothed) Median Days on Pending \n",
312
- "0 NaN NaN \n",
313
- "1 NaN NaN \n",
314
- "2 NaN NaN \n",
315
- "3 NaN NaN \n",
316
- "4 NaN NaN \n",
317
- "... ... ... \n",
318
- "586709 NaN NaN \n",
319
- "586710 NaN NaN \n",
320
- "586711 NaN NaN \n",
321
- "586712 NaN NaN \n",
322
- "586713 NaN NaN \n",
323
  "\n",
324
  "[586714 rows x 13 columns]"
325
  ]
326
  },
327
- "execution_count": 7,
328
  "metadata": {},
329
  "output_type": "execute_result"
330
  }
@@ -351,13 +297,13 @@
351
  "\n",
352
  "for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
353
  " if filename.endswith(\".csv\"):\n",
354
- " # print(\"processing \" + filename)\n",
355
- " cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
356
- "\n",
357
  " # skip month files for now since they are redundant\n",
358
  " if \"month\" in filename:\n",
359
  " continue\n",
360
  "\n",
 
 
361
  " if \"_uc_sfrcondo_\" in filename:\n",
362
  " cur_df[\"Home Type\"] = \"all homes (SFR + Condo)\"\n",
363
  " # change column type to string\n",
@@ -365,22 +311,9 @@
365
  " elif \"_uc_sfr_\" in filename:\n",
366
  " cur_df[\"Home Type\"] = \"SFR\"\n",
367
  "\n",
368
- " # Identify columns to pivot\n",
369
- " columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
370
- "\n",
371
- " # iterate over slug column mappings and get df\n",
372
- " for slug, col_name in slug_column_mappings.items():\n",
373
- " if slug in filename:\n",
374
- " cur_df = get_df(\n",
375
- " cur_df,\n",
376
- " exclude_columns,\n",
377
- " columns_to_pivot,\n",
378
- " col_name,\n",
379
- " filename,\n",
380
- " )\n",
381
- "\n",
382
- " data_frames.append(cur_df)\n",
383
- " break\n",
384
  "\n",
385
  "\n",
386
  "combined_df = get_combined_df(\n",
@@ -396,16 +329,14 @@
396
  " ],\n",
397
  ")\n",
398
  "\n",
399
- "columns_to_coalesce = slug_column_mappings.values()\n",
400
- "\n",
401
- "combined_df = coalesce_columns(combined_df, columns_to_coalesce)\n",
402
  "\n",
403
  "combined_df"
404
  ]
405
  },
406
  {
407
  "cell_type": "code",
408
- "execution_count": 8,
409
  "metadata": {},
410
  "outputs": [
411
  {
@@ -502,7 +433,7 @@
502
  " <td>NaN</td>\n",
503
  " <td>SFR</td>\n",
504
  " <td>2018-01-27</td>\n",
505
- " <td>NaN</td>\n",
506
  " <td>0.047930</td>\n",
507
  " <td>13998.585612</td>\n",
508
  " <td>NaN</td>\n",
@@ -518,10 +449,10 @@
518
  " <td>NaN</td>\n",
519
  " <td>SFR</td>\n",
520
  " <td>2018-02-03</td>\n",
521
- " <td>NaN</td>\n",
522
  " <td>0.047622</td>\n",
523
  " <td>14120.035549</td>\n",
524
- " <td>NaN</td>\n",
525
  " <td>NaN</td>\n",
526
  " <td>NaN</td>\n",
527
  " </tr>\n",
@@ -657,8 +588,8 @@
657
  "0 NaN NaN \n",
658
  "1 NaN 0.049042 \n",
659
  "2 NaN 0.044740 \n",
660
- "3 NaN 0.047930 \n",
661
- "4 NaN 0.047622 \n",
662
  "... ... ... \n",
663
  "586709 NaN 0.094017 \n",
664
  "586710 NaN 0.070175 \n",
@@ -671,7 +602,7 @@
671
  "1 14114.788383 NaN \n",
672
  "2 14326.128956 NaN \n",
673
  "3 13998.585612 NaN \n",
674
- "4 14120.035549 NaN \n",
675
  "... ... ... \n",
676
  "586709 NaN 0.037378 \n",
677
  "586710 NaN 0.043203 \n",
@@ -695,7 +626,7 @@
695
  "[586714 rows x 13 columns]"
696
  ]
697
  },
698
- "execution_count": 8,
699
  "metadata": {},
700
  "output_type": "execute_result"
701
  }
@@ -717,7 +648,7 @@
717
  },
718
  {
719
  "cell_type": "code",
720
- "execution_count": 9,
721
  "metadata": {},
722
  "outputs": [],
723
  "source": [
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
9
  "import pandas as pd\n",
10
  "import os\n",
11
  "\n",
12
+ "from helpers import (\n",
13
+ " get_combined_df,\n",
14
+ " coalesce_columns,\n",
15
+ " save_final_df_as_jsonl,\n",
16
+ " handle_slug_column_mappings,\n",
17
+ ")"
18
  ]
19
  },
20
  {
21
  "cell_type": "code",
22
+ "execution_count": 2,
23
  "metadata": {},
24
  "outputs": [],
25
  "source": [
 
32
  },
33
  {
34
  "cell_type": "code",
35
+ "execution_count": 3,
36
  "metadata": {},
37
  "outputs": [
 
 
 
 
 
 
 
38
  {
39
  "data": {
40
  "text/html": [
 
129
  " <td>NaN</td>\n",
130
  " <td>SFR</td>\n",
131
  " <td>2018-01-27</td>\n",
132
+ " <td>13998.585612</td>\n",
133
  " <td>0.047930</td>\n",
134
  " <td>13998.585612</td>\n",
135
  " <td>NaN</td>\n",
 
145
  " <td>NaN</td>\n",
146
  " <td>SFR</td>\n",
147
  " <td>2018-02-03</td>\n",
148
+ " <td>14120.035549</td>\n",
149
  " <td>0.047622</td>\n",
150
  " <td>14120.035549</td>\n",
151
+ " <td>0.047622</td>\n",
152
  " <td>NaN</td>\n",
153
  " <td>NaN</td>\n",
154
  " </tr>\n",
 
254
  "</div>"
255
  ],
256
  "text/plain": [
257
+ " RegionID ... Median Days on Pending\n",
258
+ "0 102001 ... NaN\n",
259
+ "1 102001 ... NaN\n",
260
+ "2 102001 ... NaN\n",
261
+ "3 102001 ... NaN\n",
262
+ "4 102001 ... NaN\n",
263
+ "... ... ... ...\n",
264
+ "586709 845172 ... NaN\n",
265
+ "586710 845172 ... NaN\n",
266
+ "586711 845172 ... NaN\n",
267
+ "586712 845172 ... NaN\n",
268
+ "586713 845172 ... NaN\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
  "\n",
270
  "[586714 rows x 13 columns]"
271
  ]
272
  },
273
+ "execution_count": 3,
274
  "metadata": {},
275
  "output_type": "execute_result"
276
  }
 
297
  "\n",
298
  "for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
299
  " if filename.endswith(\".csv\"):\n",
300
+ " print(\"processing \" + filename)\n",
 
 
301
  " # skip month files for now since they are redundant\n",
302
  " if \"month\" in filename:\n",
303
  " continue\n",
304
  "\n",
305
+ " cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
306
+ "\n",
307
  " if \"_uc_sfrcondo_\" in filename:\n",
308
  " cur_df[\"Home Type\"] = \"all homes (SFR + Condo)\"\n",
309
  " # change column type to string\n",
 
311
  " elif \"_uc_sfr_\" in filename:\n",
312
  " cur_df[\"Home Type\"] = \"SFR\"\n",
313
  "\n",
314
+ " data_frames = handle_slug_column_mappings(\n",
315
+ " data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
316
+ " )\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
317
  "\n",
318
  "\n",
319
  "combined_df = get_combined_df(\n",
 
329
  " ],\n",
330
  ")\n",
331
  "\n",
332
+ "combined_df = coalesce_columns(combined_df)\n",
 
 
333
  "\n",
334
  "combined_df"
335
  ]
336
  },
337
  {
338
  "cell_type": "code",
339
+ "execution_count": 9,
340
  "metadata": {},
341
  "outputs": [
342
  {
 
433
  " <td>NaN</td>\n",
434
  " <td>SFR</td>\n",
435
  " <td>2018-01-27</td>\n",
436
+ " <td>13998.585612</td>\n",
437
  " <td>0.047930</td>\n",
438
  " <td>13998.585612</td>\n",
439
  " <td>NaN</td>\n",
 
449
  " <td>NaN</td>\n",
450
  " <td>SFR</td>\n",
451
  " <td>2018-02-03</td>\n",
452
+ " <td>14120.035549</td>\n",
453
  " <td>0.047622</td>\n",
454
  " <td>14120.035549</td>\n",
455
+ " <td>0.047622</td>\n",
456
  " <td>NaN</td>\n",
457
  " <td>NaN</td>\n",
458
  " </tr>\n",
 
588
  "0 NaN NaN \n",
589
  "1 NaN 0.049042 \n",
590
  "2 NaN 0.044740 \n",
591
+ "3 13998.585612 0.047930 \n",
592
+ "4 14120.035549 0.047622 \n",
593
  "... ... ... \n",
594
  "586709 NaN 0.094017 \n",
595
  "586710 NaN 0.070175 \n",
 
602
  "1 14114.788383 NaN \n",
603
  "2 14326.128956 NaN \n",
604
  "3 13998.585612 NaN \n",
605
+ "4 14120.035549 0.047622 \n",
606
  "... ... ... \n",
607
  "586709 NaN 0.037378 \n",
608
  "586710 NaN 0.043203 \n",
 
626
  "[586714 rows x 13 columns]"
627
  ]
628
  },
629
+ "execution_count": 9,
630
  "metadata": {},
631
  "output_type": "execute_result"
632
  }
 
648
  },
649
  {
650
  "cell_type": "code",
651
+ "execution_count": 5,
652
  "metadata": {},
653
  "outputs": [],
654
  "source": [
processors/for_sale_listings.ipynb CHANGED
@@ -9,7 +9,12 @@
9
  "import pandas as pd\n",
10
  "import os\n",
11
  "\n",
12
- "from helpers import get_combined_df, coalesce_columns, get_df, save_final_df_as_jsonl"
 
 
 
 
 
13
  ]
14
  },
15
  {
@@ -340,8 +345,6 @@
340
  }
341
  ],
342
  "source": [
343
- "# base cols RegionID,SizeRank,RegionName,RegionType,StateName\n",
344
- "\n",
345
  "exclude_columns = [\n",
346
  " \"RegionID\",\n",
347
  " \"SizeRank\",\n",
@@ -376,21 +379,9 @@
376
  " elif \"condo\" in filename:\n",
377
  " cur_df[\"Home Type\"] = \"condo/co-op only\"\n",
378
  "\n",
379
- " # Identify columns to pivot\n",
380
- " columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
381
- "\n",
382
- " for slug, col_name in slug_column_mappings.items():\n",
383
- " if slug in filename:\n",
384
- " cur_df = get_df(\n",
385
- " cur_df,\n",
386
- " exclude_columns,\n",
387
- " columns_to_pivot,\n",
388
- " col_name,\n",
389
- " filename,\n",
390
- " )\n",
391
- "\n",
392
- " data_frames.append(cur_df)\n",
393
- " break\n",
394
  "\n",
395
  "\n",
396
  "combined_df = get_combined_df(\n",
@@ -406,18 +397,7 @@
406
  " ],\n",
407
  ")\n",
408
  "\n",
409
- "\n",
410
- "# iterate over rows of combined df and coalesce column values across columns that start with \"Median Sale Price\"\n",
411
- "columns_to_coalesce = [\n",
412
- " \"Median Listing Price\",\n",
413
- " \"Median Listing Price (Smoothed)\",\n",
414
- " \"New Listings\",\n",
415
- " \"New Listings (Smoothed)\",\n",
416
- " \"New Pending (Smoothed)\",\n",
417
- " \"New Pending\",\n",
418
- "]\n",
419
- "\n",
420
- "combined_df = coalesce_columns(combined_df, columns_to_coalesce)\n",
421
  "\n",
422
  "combined_df"
423
  ]
 
9
  "import pandas as pd\n",
10
  "import os\n",
11
  "\n",
12
+ "from helpers import (\n",
13
+ " get_combined_df,\n",
14
+ " coalesce_columns,\n",
15
+ " save_final_df_as_jsonl,\n",
16
+ " handle_slug_column_mappings,\n",
17
+ ")"
18
  ]
19
  },
20
  {
 
345
  }
346
  ],
347
  "source": [
 
 
348
  "exclude_columns = [\n",
349
  " \"RegionID\",\n",
350
  " \"SizeRank\",\n",
 
379
  " elif \"condo\" in filename:\n",
380
  " cur_df[\"Home Type\"] = \"condo/co-op only\"\n",
381
  "\n",
382
+ " data_frames = handle_slug_column_mappings(\n",
383
+ " data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
384
+ " )\n",
 
 
 
 
 
 
 
 
 
 
 
 
385
  "\n",
386
  "\n",
387
  "combined_df = get_combined_df(\n",
 
397
  " ],\n",
398
  ")\n",
399
  "\n",
400
+ "combined_df = coalesce_columns(combined_df)\n",
 
 
 
 
 
 
 
 
 
 
 
401
  "\n",
402
  "combined_df"
403
  ]
processors/helpers.py CHANGED
@@ -22,7 +22,10 @@ def get_combined_df(data_frames, on):
22
  return combined_df
23
 
24
 
25
- def coalesce_columns(df, columns_to_coalesce):
 
 
 
26
  for index, row in df.iterrows():
27
  for col in df.columns:
28
  for column_to_coalesce in columns_to_coalesce:
@@ -31,7 +34,7 @@ def coalesce_columns(df, columns_to_coalesce):
31
  df.at[index, column_to_coalesce] = row[col]
32
 
33
  # remove columns with underscores
34
- combined_df = df[[col for col in df.columns if "_" not in col]]
35
  return combined_df
36
 
37
 
@@ -67,3 +70,25 @@ def save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df):
67
  final_df.to_json(
68
  FULL_PROCESSED_DIR_PATH + "final.jsonl", orient="records", lines=True
69
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  return combined_df
23
 
24
 
25
+ def coalesce_columns(
26
+ df,
27
+ ):
28
+ columns_to_coalesce = [col for col in df.columns if "_" not in col]
29
  for index, row in df.iterrows():
30
  for col in df.columns:
31
  for column_to_coalesce in columns_to_coalesce:
 
34
  df.at[index, column_to_coalesce] = row[col]
35
 
36
  # remove columns with underscores
37
+ combined_df = df[columns_to_coalesce]
38
  return combined_df
39
 
40
 
 
70
  final_df.to_json(
71
  FULL_PROCESSED_DIR_PATH + "final.jsonl", orient="records", lines=True
72
  )
73
+
74
+
75
+ def handle_slug_column_mappings(
76
+ data_frames, slug_column_mappings, exclude_columns, filename, cur_df
77
+ ):
78
+ # Identify columns to pivot
79
+ columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]
80
+
81
+ for slug, col_name in slug_column_mappings.items():
82
+ if slug in filename:
83
+ cur_df = get_df(
84
+ cur_df,
85
+ exclude_columns,
86
+ columns_to_pivot,
87
+ col_name,
88
+ filename,
89
+ )
90
+
91
+ data_frames.append(cur_df)
92
+ break
93
+
94
+ return data_frames
processors/home_value_forecasts.ipynb CHANGED
@@ -2,19 +2,19 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 4,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
9
  "import pandas as pd\n",
10
  "import os\n",
11
  "\n",
12
- "from helpers import save_final_df_as_jsonl"
13
  ]
14
  },
15
  {
16
  "cell_type": "code",
17
- "execution_count": 5,
18
  "metadata": {},
19
  "outputs": [],
20
  "source": [
@@ -27,7 +27,7 @@
27
  },
28
  {
29
  "cell_type": "code",
30
- "execution_count": 6,
31
  "metadata": {},
32
  "outputs": [
33
  {
@@ -66,114 +66,114 @@
66
  " <th>RegionName</th>\n",
67
  " <th>RegionType</th>\n",
68
  " <th>StateName</th>\n",
69
- " <th>BaseDate</th>\n",
70
- " <th>Month Over Month % (Smoothed)</th>\n",
71
- " <th>Quarter Over Quarter % (Smoothed)</th>\n",
72
- " <th>Year Over Year % (Smoothed)</th>\n",
73
- " <th>Month Over Month % (Raw)</th>\n",
74
- " <th>Quarter Over Quarter % (Raw)</th>\n",
75
- " <th>Year Over Year % (Raw)</th>\n",
76
  " <th>State</th>\n",
77
  " <th>City</th>\n",
78
  " <th>Metro</th>\n",
79
  " <th>CountyName</th>\n",
 
 
 
 
 
 
 
80
  " </tr>\n",
81
  " </thead>\n",
82
  " <tbody>\n",
83
  " <tr>\n",
84
  " <th>0</th>\n",
85
- " <td>102001</td>\n",
86
- " <td>0</td>\n",
87
- " <td>United States</td>\n",
88
- " <td>country</td>\n",
89
- " <td>NaN</td>\n",
 
 
 
 
90
  " <td>2023-12-31</td>\n",
91
- " <td>0.1</td>\n",
92
- " <td>0.4</td>\n",
93
- " <td>3.5</td>\n",
94
- " <td>-0.5</td>\n",
95
- " <td>0.4</td>\n",
96
- " <td>3.7</td>\n",
97
- " <td>NaN</td>\n",
98
  " <td>NaN</td>\n",
99
  " <td>NaN</td>\n",
100
  " <td>NaN</td>\n",
 
 
 
101
  " </tr>\n",
102
  " <tr>\n",
103
  " <th>1</th>\n",
104
- " <td>394913</td>\n",
105
- " <td>1</td>\n",
106
- " <td>New York, NY</td>\n",
107
- " <td>msa</td>\n",
 
108
  " <td>NY</td>\n",
 
 
 
109
  " <td>2023-12-31</td>\n",
110
- " <td>0.2</td>\n",
111
- " <td>0.2</td>\n",
112
- " <td>1.0</td>\n",
113
- " <td>-0.7</td>\n",
114
- " <td>-0.9</td>\n",
115
- " <td>0.6</td>\n",
116
- " <td>NaN</td>\n",
117
  " <td>NaN</td>\n",
118
  " <td>NaN</td>\n",
119
  " <td>NaN</td>\n",
 
 
 
120
  " </tr>\n",
121
  " <tr>\n",
122
  " <th>2</th>\n",
123
- " <td>753899</td>\n",
124
- " <td>2</td>\n",
125
- " <td>Los Angeles, CA</td>\n",
126
- " <td>msa</td>\n",
127
- " <td>CA</td>\n",
 
 
 
 
128
  " <td>2023-12-31</td>\n",
129
- " <td>-0.1</td>\n",
130
- " <td>-1.8</td>\n",
131
- " <td>0.7</td>\n",
132
  " <td>-0.6</td>\n",
133
- " <td>0.8</td>\n",
134
- " <td>1.4</td>\n",
135
- " <td>NaN</td>\n",
136
- " <td>NaN</td>\n",
137
- " <td>NaN</td>\n",
138
- " <td>NaN</td>\n",
139
  " </tr>\n",
140
  " <tr>\n",
141
  " <th>3</th>\n",
142
- " <td>394463</td>\n",
143
- " <td>3</td>\n",
144
- " <td>Chicago, IL</td>\n",
145
- " <td>msa</td>\n",
146
- " <td>IL</td>\n",
 
 
 
 
147
  " <td>2023-12-31</td>\n",
148
- " <td>0.1</td>\n",
149
- " <td>0.4</td>\n",
150
- " <td>1.6</td>\n",
151
- " <td>-0.8</td>\n",
152
- " <td>-0.2</td>\n",
153
- " <td>1.4</td>\n",
154
- " <td>NaN</td>\n",
155
- " <td>NaN</td>\n",
156
- " <td>NaN</td>\n",
157
- " <td>NaN</td>\n",
158
  " </tr>\n",
159
  " <tr>\n",
160
  " <th>4</th>\n",
161
- " <td>394514</td>\n",
162
- " <td>4</td>\n",
163
- " <td>Dallas, TX</td>\n",
164
- " <td>msa</td>\n",
165
- " <td>TX</td>\n",
 
 
 
 
166
  " <td>2023-12-31</td>\n",
167
- " <td>-0.1</td>\n",
168
- " <td>0.0</td>\n",
169
- " <td>3.2</td>\n",
170
- " <td>-0.6</td>\n",
171
- " <td>0.9</td>\n",
172
- " <td>3.6</td>\n",
173
- " <td>NaN</td>\n",
174
  " <td>NaN</td>\n",
175
  " <td>NaN</td>\n",
176
  " <td>NaN</td>\n",
 
 
 
177
  " </tr>\n",
178
  " <tr>\n",
179
  " <th>...</th>\n",
@@ -195,182 +195,195 @@
195
  " <td>...</td>\n",
196
  " </tr>\n",
197
  " <tr>\n",
198
- " <th>20162</th>\n",
199
- " <td>82097</td>\n",
200
- " <td>39992</td>\n",
201
- " <td>55087</td>\n",
202
  " <td>zip</td>\n",
203
- " <td>MN</td>\n",
 
 
 
 
204
  " <td>2023-12-31</td>\n",
205
- " <td>0.1</td>\n",
206
- " <td>0.7</td>\n",
207
- " <td>1.8</td>\n",
208
- " <td>-0.9</td>\n",
209
- " <td>-0.2</td>\n",
210
- " <td>2.6</td>\n",
211
- " <td>MN</td>\n",
212
- " <td>Warsaw</td>\n",
213
- " <td>Faribault-Northfield, MN</td>\n",
214
- " <td>Rice County</td>\n",
215
  " </tr>\n",
216
  " <tr>\n",
217
- " <th>20163</th>\n",
218
- " <td>85325</td>\n",
219
- " <td>39992</td>\n",
220
- " <td>62093</td>\n",
221
  " <td>zip</td>\n",
222
- " <td>IL</td>\n",
 
 
 
 
223
  " <td>2023-12-31</td>\n",
224
- " <td>0.9</td>\n",
225
- " <td>0.4</td>\n",
226
- " <td>3.7</td>\n",
227
- " <td>-0.7</td>\n",
228
- " <td>0.4</td>\n",
229
- " <td>2.3</td>\n",
230
- " <td>IL</td>\n",
231
  " <td>NaN</td>\n",
232
- " <td>St. Louis, MO-IL</td>\n",
233
- " <td>Macoupin County</td>\n",
 
 
 
234
  " </tr>\n",
235
  " <tr>\n",
236
- " <th>20164</th>\n",
237
- " <td>92085</td>\n",
238
- " <td>39992</td>\n",
239
- " <td>77661</td>\n",
240
  " <td>zip</td>\n",
241
- " <td>TX</td>\n",
 
 
 
 
242
  " <td>2023-12-31</td>\n",
243
- " <td>-0.5</td>\n",
244
- " <td>0.3</td>\n",
245
- " <td>-0.6</td>\n",
246
- " <td>-0.4</td>\n",
247
- " <td>0.0</td>\n",
248
- " <td>1.2</td>\n",
249
- " <td>TX</td>\n",
250
  " <td>NaN</td>\n",
251
- " <td>Houston-The Woodlands-Sugar Land, TX</td>\n",
252
- " <td>Chambers County</td>\n",
 
 
 
253
  " </tr>\n",
254
  " <tr>\n",
255
- " <th>20165</th>\n",
256
- " <td>92811</td>\n",
257
  " <td>39992</td>\n",
258
- " <td>79078</td>\n",
259
  " <td>zip</td>\n",
260
- " <td>TX</td>\n",
 
 
 
 
261
  " <td>2023-12-31</td>\n",
262
- " <td>-1.2</td>\n",
263
- " <td>-1.1</td>\n",
264
- " <td>-3.1</td>\n",
265
- " <td>-1.7</td>\n",
266
- " <td>-2.6</td>\n",
267
- " <td>-1.9</td>\n",
268
- " <td>TX</td>\n",
269
- " <td>NaN</td>\n",
270
- " <td>Borger, TX</td>\n",
271
- " <td>Hutchinson County</td>\n",
272
  " </tr>\n",
273
  " <tr>\n",
274
- " <th>20166</th>\n",
275
- " <td>98183</td>\n",
276
- " <td>39992</td>\n",
277
- " <td>95419</td>\n",
278
  " <td>zip</td>\n",
279
- " <td>CA</td>\n",
 
 
 
 
280
  " <td>2023-12-31</td>\n",
281
- " <td>-0.5</td>\n",
282
- " <td>-0.2</td>\n",
283
- " <td>0.0</td>\n",
284
- " <td>-0.5</td>\n",
285
- " <td>0.6</td>\n",
286
- " <td>-0.4</td>\n",
287
- " <td>CA</td>\n",
288
- " <td>Camp Meeker</td>\n",
289
- " <td>Santa Rosa-Petaluma, CA</td>\n",
290
- " <td>Sonoma County</td>\n",
291
  " </tr>\n",
292
  " </tbody>\n",
293
  "</table>\n",
294
- "<p>21062 rows × 16 columns</p>\n",
295
  "</div>"
296
  ],
297
  "text/plain": [
298
- " RegionID SizeRank RegionName RegionType StateName BaseDate \\\n",
299
- "0 102001 0 United States country NaN 2023-12-31 \n",
300
- "1 394913 1 New York, NY msa NY 2023-12-31 \n",
301
- "2 753899 2 Los Angeles, CA msa CA 2023-12-31 \n",
302
- "3 394463 3 Chicago, IL msa IL 2023-12-31 \n",
303
- "4 394514 4 Dallas, TX msa TX 2023-12-31 \n",
304
- "... ... ... ... ... ... ... \n",
305
- "20162 82097 39992 55087 zip MN 2023-12-31 \n",
306
- "20163 85325 39992 62093 zip IL 2023-12-31 \n",
307
- "20164 92085 39992 77661 zip TX 2023-12-31 \n",
308
- "20165 92811 39992 79078 zip TX 2023-12-31 \n",
309
- "20166 98183 39992 95419 zip CA 2023-12-31 \n",
 
 
 
 
 
 
 
 
 
 
 
 
 
310
  "\n",
311
- " Month Over Month % (Smoothed) Quarter Over Quarter % (Smoothed) \\\n",
312
- "0 0.1 0.4 \n",
313
- "1 0.2 0.2 \n",
314
- "2 -0.1 -1.8 \n",
315
- "3 0.1 0.4 \n",
316
- "4 -0.1 0.0 \n",
317
- "... ... ... \n",
318
- "20162 0.1 0.7 \n",
319
- "20163 0.9 0.4 \n",
320
- "20164 -0.5 0.3 \n",
321
- "20165 -1.2 -1.1 \n",
322
- "20166 -0.5 -0.2 \n",
323
  "\n",
324
- " Year Over Year % (Smoothed) Month Over Month % (Raw) \\\n",
325
- "0 3.5 -0.5 \n",
326
- "1 1.0 -0.7 \n",
327
- "2 0.7 -0.6 \n",
328
- "3 1.6 -0.8 \n",
329
- "4 3.2 -0.6 \n",
330
- "... ... ... \n",
331
- "20162 1.8 -0.9 \n",
332
- "20163 3.7 -0.7 \n",
333
- "20164 -0.6 -0.4 \n",
334
- "20165 -3.1 -1.7 \n",
335
- "20166 0.0 -0.5 \n",
336
  "\n",
337
- " Quarter Over Quarter % (Raw) Year Over Year % (Raw) State \\\n",
338
- "0 0.4 3.7 NaN \n",
339
- "1 -0.9 0.6 NaN \n",
340
- "2 0.8 1.4 NaN \n",
341
- "3 -0.2 1.4 NaN \n",
342
- "4 0.9 3.6 NaN \n",
343
- "... ... ... ... \n",
344
- "20162 -0.2 2.6 MN \n",
345
- "20163 0.4 2.3 IL \n",
346
- "20164 0.0 1.2 TX \n",
347
- "20165 -2.6 -1.9 TX \n",
348
- "20166 0.6 -0.4 CA \n",
349
  "\n",
350
- " City Metro CountyName \n",
351
- "0 NaN NaN NaN \n",
352
- "1 NaN NaN NaN \n",
353
- "2 NaN NaN NaN \n",
354
- "3 NaN NaN NaN \n",
355
- "4 NaN NaN NaN \n",
356
- "... ... ... ... \n",
357
- "20162 Warsaw Faribault-Northfield, MN Rice County \n",
358
- "20163 NaN St. Louis, MO-IL Macoupin County \n",
359
- "20164 NaN Houston-The Woodlands-Sugar Land, TX Chambers County \n",
360
- "20165 NaN Borger, TX Hutchinson County \n",
361
- "20166 Camp Meeker Santa Rosa-Petaluma, CA Sonoma County \n",
362
  "\n",
363
- "[21062 rows x 16 columns]"
364
  ]
365
  },
366
- "execution_count": 6,
367
  "metadata": {},
368
  "output_type": "execute_result"
369
  }
370
  ],
371
  "source": [
372
- "metro_data_frames = []\n",
373
- "zip_data_frames = []\n",
374
  "for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
375
  " if filename.endswith(\".csv\"):\n",
376
  " print(\"processing \" + filename)\n",
@@ -380,47 +393,35 @@
380
  " if filename.endswith(\"sm_sa_month.csv\"):\n",
381
  " # print('Smoothed')\n",
382
  " cur_df.columns = list(cur_df.columns[:-3]) + [\n",
383
- " x + \" (Smoothed)\" for x in cols\n",
384
  " ]\n",
385
  " else:\n",
386
  " # print('Raw')\n",
387
- " cur_df.columns = list(cur_df.columns[:-3]) + [x + \" (Raw)\" for x in cols]\n",
 
388
  "\n",
389
- " if filename.startswith(\"Metro\"):\n",
390
- " # print('Metro')\n",
391
- " metro_data_frames.append(cur_df)\n",
392
  "\n",
393
- " elif filename.startswith(\"Zip\"):\n",
394
- " # print('Zip')\n",
395
- " zip_data_frames.append(cur_df)\n",
396
- "\n",
397
- "\n",
398
- "def get_combined_df(data_frames):\n",
399
- " combined_df = None\n",
400
- " if len(data_frames) > 1:\n",
401
- " # iterate over dataframes and merge them\n",
402
- " final_df = data_frames[0]\n",
403
- " for i in range(1, len(data_frames)):\n",
404
- " cur_df = data_frames[i]\n",
405
- " cols = list(cur_df.columns[-3:])\n",
406
- " cols.append(\"RegionID\")\n",
407
- " combined_df = pd.merge(final_df, cur_df[cols], on=\"RegionID\")\n",
408
- " elif len(data_frames) == 1:\n",
409
- " combined_df = data_frames[0]\n",
410
- "\n",
411
- " return combined_df\n",
412
  "\n",
 
 
 
 
 
 
 
 
 
 
413
  "\n",
414
- "combined_metro_dfs = get_combined_df(metro_data_frames)\n",
415
- "combined_zip_dfs = get_combined_df(zip_data_frames)\n",
416
  "\n",
417
- "combined_df = pd.concat([combined_metro_dfs, combined_zip_dfs])\n",
418
  "combined_df"
419
  ]
420
  },
421
  {
422
  "cell_type": "code",
423
- "execution_count": 8,
424
  "metadata": {},
425
  "outputs": [
426
  {
@@ -445,112 +446,112 @@
445
  " <tr style=\"text-align: right;\">\n",
446
  " <th></th>\n",
447
  " <th>Region ID</th>\n",
 
448
  " <th>Region</th>\n",
449
  " <th>RegionType</th>\n",
450
- " <th>Size Rank</th>\n",
451
  " <th>State</th>\n",
452
  " <th>City</th>\n",
453
  " <th>Metro</th>\n",
454
  " <th>County</th>\n",
455
  " <th>Date</th>\n",
456
- " <th>Month Over Month % (Smoothed)</th>\n",
457
- " <th>Quarter Over Quarter % (Smoothed)</th>\n",
458
- " <th>Year Over Year % (Smoothed)</th>\n",
459
- " <th>Month Over Month % (Raw)</th>\n",
460
- " <th>Quarter Over Quarter % (Raw)</th>\n",
461
- " <th>Year Over Year % (Raw)</th>\n",
462
  " </tr>\n",
463
  " </thead>\n",
464
  " <tbody>\n",
465
  " <tr>\n",
466
  " <th>0</th>\n",
467
- " <td>102001</td>\n",
468
- " <td>United States</td>\n",
469
- " <td>country</td>\n",
470
- " <td>0</td>\n",
471
- " <td>NaN</td>\n",
 
 
 
 
472
  " <td>NaN</td>\n",
473
  " <td>NaN</td>\n",
474
  " <td>NaN</td>\n",
475
- " <td>2023-12-31</td>\n",
476
- " <td>0.1</td>\n",
477
- " <td>0.4</td>\n",
478
- " <td>3.5</td>\n",
479
- " <td>-0.5</td>\n",
480
- " <td>0.4</td>\n",
481
- " <td>3.7</td>\n",
482
  " </tr>\n",
483
  " <tr>\n",
484
  " <th>1</th>\n",
485
- " <td>394913</td>\n",
486
- " <td>New York, NY</td>\n",
487
- " <td>msa</td>\n",
488
- " <td>1</td>\n",
489
  " <td>NY</td>\n",
490
- " <td>New York</td>\n",
 
 
 
 
491
  " <td>NaN</td>\n",
492
  " <td>NaN</td>\n",
493
- " <td>2023-12-31</td>\n",
494
- " <td>0.2</td>\n",
495
- " <td>0.2</td>\n",
496
- " <td>1.0</td>\n",
497
  " <td>-0.7</td>\n",
498
  " <td>-0.9</td>\n",
499
  " <td>0.6</td>\n",
500
  " </tr>\n",
501
  " <tr>\n",
502
  " <th>2</th>\n",
503
- " <td>753899</td>\n",
504
- " <td>Los Angeles, CA</td>\n",
505
- " <td>msa</td>\n",
506
- " <td>2</td>\n",
507
- " <td>CA</td>\n",
508
- " <td>Los Angeles</td>\n",
509
- " <td>NaN</td>\n",
510
- " <td>NaN</td>\n",
511
  " <td>2023-12-31</td>\n",
512
- " <td>-0.1</td>\n",
513
- " <td>-1.8</td>\n",
514
- " <td>0.7</td>\n",
515
  " <td>-0.6</td>\n",
516
- " <td>0.8</td>\n",
517
- " <td>1.4</td>\n",
518
  " </tr>\n",
519
  " <tr>\n",
520
  " <th>3</th>\n",
521
- " <td>394463</td>\n",
522
- " <td>Chicago, IL</td>\n",
523
- " <td>msa</td>\n",
524
- " <td>3</td>\n",
525
- " <td>IL</td>\n",
526
- " <td>Chicago</td>\n",
527
- " <td>NaN</td>\n",
528
- " <td>NaN</td>\n",
529
  " <td>2023-12-31</td>\n",
530
- " <td>0.1</td>\n",
531
- " <td>0.4</td>\n",
532
- " <td>1.6</td>\n",
533
- " <td>-0.8</td>\n",
534
- " <td>-0.2</td>\n",
535
- " <td>1.4</td>\n",
536
  " </tr>\n",
537
  " <tr>\n",
538
  " <th>4</th>\n",
539
- " <td>394514</td>\n",
540
- " <td>Dallas, TX</td>\n",
541
- " <td>msa</td>\n",
542
- " <td>4</td>\n",
543
- " <td>TX</td>\n",
544
- " <td>Dallas</td>\n",
 
 
 
545
  " <td>NaN</td>\n",
546
  " <td>NaN</td>\n",
547
- " <td>2023-12-31</td>\n",
548
- " <td>-0.1</td>\n",
549
  " <td>0.0</td>\n",
550
- " <td>3.2</td>\n",
551
- " <td>-0.6</td>\n",
552
- " <td>0.9</td>\n",
553
- " <td>3.6</td>\n",
554
  " </tr>\n",
555
  " <tr>\n",
556
  " <th>...</th>\n",
@@ -571,193 +572,191 @@
571
  " <td>...</td>\n",
572
  " </tr>\n",
573
  " <tr>\n",
574
- " <th>20162</th>\n",
575
- " <td>82097</td>\n",
576
- " <td>55087</td>\n",
 
577
  " <td>zip</td>\n",
578
- " <td>39992</td>\n",
579
- " <td>MN</td>\n",
580
- " <td>Warsaw</td>\n",
581
- " <td>Faribault-Northfield, MN</td>\n",
582
- " <td>Rice County</td>\n",
583
  " <td>2023-12-31</td>\n",
584
- " <td>0.1</td>\n",
585
- " <td>0.7</td>\n",
586
- " <td>1.8</td>\n",
587
- " <td>-0.9</td>\n",
588
- " <td>-0.2</td>\n",
589
- " <td>2.6</td>\n",
590
  " </tr>\n",
591
  " <tr>\n",
592
- " <th>20163</th>\n",
593
- " <td>85325</td>\n",
594
- " <td>62093</td>\n",
 
595
  " <td>zip</td>\n",
596
- " <td>39992</td>\n",
597
- " <td>IL</td>\n",
598
- " <td>NaN</td>\n",
599
- " <td>St. Louis, MO-IL</td>\n",
600
- " <td>Macoupin County</td>\n",
601
  " <td>2023-12-31</td>\n",
602
- " <td>0.9</td>\n",
603
- " <td>0.4</td>\n",
604
- " <td>3.7</td>\n",
605
  " <td>-0.7</td>\n",
606
- " <td>0.4</td>\n",
607
- " <td>2.3</td>\n",
608
  " </tr>\n",
609
  " <tr>\n",
610
- " <th>20164</th>\n",
611
- " <td>92085</td>\n",
612
- " <td>77661</td>\n",
 
613
  " <td>zip</td>\n",
614
- " <td>39992</td>\n",
615
- " <td>TX</td>\n",
616
- " <td>NaN</td>\n",
617
- " <td>Houston-The Woodlands-Sugar Land, TX</td>\n",
618
- " <td>Chambers County</td>\n",
619
  " <td>2023-12-31</td>\n",
620
- " <td>-0.5</td>\n",
621
- " <td>0.3</td>\n",
622
- " <td>-0.6</td>\n",
623
- " <td>-0.4</td>\n",
624
  " <td>0.0</td>\n",
625
- " <td>1.2</td>\n",
626
  " </tr>\n",
627
  " <tr>\n",
628
- " <th>20165</th>\n",
629
- " <td>92811</td>\n",
630
- " <td>79078</td>\n",
631
- " <td>zip</td>\n",
632
  " <td>39992</td>\n",
633
- " <td>TX</td>\n",
634
- " <td>NaN</td>\n",
635
- " <td>Borger, TX</td>\n",
636
- " <td>Hutchinson County</td>\n",
 
 
637
  " <td>2023-12-31</td>\n",
638
- " <td>-1.2</td>\n",
639
- " <td>-1.1</td>\n",
640
- " <td>-3.1</td>\n",
641
- " <td>-1.7</td>\n",
642
- " <td>-2.6</td>\n",
643
- " <td>-1.9</td>\n",
644
  " </tr>\n",
645
  " <tr>\n",
646
- " <th>20166</th>\n",
647
- " <td>98183</td>\n",
648
- " <td>95419</td>\n",
 
649
  " <td>zip</td>\n",
650
- " <td>39992</td>\n",
651
- " <td>CA</td>\n",
652
- " <td>Camp Meeker</td>\n",
653
- " <td>Santa Rosa-Petaluma, CA</td>\n",
654
- " <td>Sonoma County</td>\n",
655
  " <td>2023-12-31</td>\n",
656
- " <td>-0.5</td>\n",
657
- " <td>-0.2</td>\n",
658
- " <td>0.0</td>\n",
659
- " <td>-0.5</td>\n",
660
- " <td>0.6</td>\n",
661
- " <td>-0.4</td>\n",
662
  " </tr>\n",
663
  " </tbody>\n",
664
  "</table>\n",
665
- "<p>21062 rows × 15 columns</p>\n",
666
  "</div>"
667
  ],
668
  "text/plain": [
669
- " Region ID Region RegionType Size Rank State City \\\n",
670
- "0 102001 United States country 0 NaN NaN \n",
671
- "1 394913 New York, NY msa 1 NY New York \n",
672
- "2 753899 Los Angeles, CA msa 2 CA Los Angeles \n",
673
- "3 394463 Chicago, IL msa 3 IL Chicago \n",
674
- "4 394514 Dallas, TX msa 4 TX Dallas \n",
675
- "... ... ... ... ... ... ... \n",
676
- "20162 82097 55087 zip 39992 MN Warsaw \n",
677
- "20163 85325 62093 zip 39992 IL NaN \n",
678
- "20164 92085 77661 zip 39992 TX NaN \n",
679
- "20165 92811 79078 zip 39992 TX NaN \n",
680
- "20166 98183 95419 zip 39992 CA Camp Meeker \n",
681
  "\n",
682
- " Metro County Date \\\n",
683
- "0 NaN NaN 2023-12-31 \n",
684
- "1 NaN NaN 2023-12-31 \n",
685
- "2 NaN NaN 2023-12-31 \n",
686
- "3 NaN NaN 2023-12-31 \n",
687
- "4 NaN NaN 2023-12-31 \n",
688
- "... ... ... ... \n",
689
- "20162 Faribault-Northfield, MN Rice County 2023-12-31 \n",
690
- "20163 St. Louis, MO-IL Macoupin County 2023-12-31 \n",
691
- "20164 Houston-The Woodlands-Sugar Land, TX Chambers County 2023-12-31 \n",
692
- "20165 Borger, TX Hutchinson County 2023-12-31 \n",
693
- "20166 Santa Rosa-Petaluma, CA Sonoma County 2023-12-31 \n",
694
  "\n",
695
- " Month Over Month % (Smoothed) Quarter Over Quarter % (Smoothed) \\\n",
696
- "0 0.1 0.4 \n",
697
- "1 0.2 0.2 \n",
698
- "2 -0.1 -1.8 \n",
699
- "3 0.1 0.4 \n",
700
- "4 -0.1 0.0 \n",
701
- "... ... ... \n",
702
- "20162 0.1 0.7 \n",
703
- "20163 0.9 0.4 \n",
704
- "20164 -0.5 0.3 \n",
705
- "20165 -1.2 -1.1 \n",
706
- "20166 -0.5 -0.2 \n",
707
  "\n",
708
- " Year Over Year % (Smoothed) Month Over Month % (Raw) \\\n",
709
- "0 3.5 -0.5 \n",
710
- "1 1.0 -0.7 \n",
711
- "2 0.7 -0.6 \n",
712
- "3 1.6 -0.8 \n",
713
- "4 3.2 -0.6 \n",
714
- "... ... ... \n",
715
- "20162 1.8 -0.9 \n",
716
- "20163 3.7 -0.7 \n",
717
- "20164 -0.6 -0.4 \n",
718
- "20165 -3.1 -1.7 \n",
719
- "20166 0.0 -0.5 \n",
720
  "\n",
721
- " Quarter Over Quarter % (Raw) Year Over Year % (Raw) \n",
722
- "0 0.4 3.7 \n",
723
- "1 -0.9 0.6 \n",
724
- "2 0.8 1.4 \n",
725
- "3 -0.2 1.4 \n",
726
- "4 0.9 3.6 \n",
727
- "... ... ... \n",
728
- "20162 -0.2 2.6 \n",
729
- "20163 0.4 2.3 \n",
730
- "20164 0.0 1.2 \n",
731
- "20165 -2.6 -1.9 \n",
732
- "20166 0.6 -0.4 \n",
733
  "\n",
734
- "[21062 rows x 15 columns]"
 
 
 
 
 
 
 
 
 
 
 
 
 
735
  ]
736
  },
737
- "execution_count": 8,
738
  "metadata": {},
739
  "output_type": "execute_result"
740
  }
741
  ],
742
  "source": [
743
- "cols = list(combined_df.columns)\n",
744
- "result_cols = [x for x in cols if \"%\" in x]\n",
745
- "\n",
746
- "all_cols = [\n",
747
- " \"RegionID\",\n",
748
- " \"RegionName\",\n",
749
- " \"RegionType\",\n",
750
- " \"SizeRank\",\n",
751
- " \"StateName\",\n",
752
- " \"State\",\n",
753
- " \"City\",\n",
754
- " \"Metro\",\n",
755
- " \"CountyName\",\n",
756
- " \"BaseDate\",\n",
757
- "] + result_cols\n",
758
- "\n",
759
- "final_df = combined_df[all_cols]\n",
760
- "final_df = final_df.drop(\"StateName\", axis=1)\n",
761
  "final_df = final_df.rename(\n",
762
  " columns={\n",
763
  " \"CountyName\": \"County\",\n",
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
9
  "import pandas as pd\n",
10
  "import os\n",
11
  "\n",
12
+ "from helpers import get_combined_df, coalesce_columns, save_final_df_as_jsonl"
13
  ]
14
  },
15
  {
16
  "cell_type": "code",
17
+ "execution_count": 2,
18
  "metadata": {},
19
  "outputs": [],
20
  "source": [
 
27
  },
28
  {
29
  "cell_type": "code",
30
+ "execution_count": 3,
31
  "metadata": {},
32
  "outputs": [
33
  {
 
66
  " <th>RegionName</th>\n",
67
  " <th>RegionType</th>\n",
68
  " <th>StateName</th>\n",
 
 
 
 
 
 
 
69
  " <th>State</th>\n",
70
  " <th>City</th>\n",
71
  " <th>Metro</th>\n",
72
  " <th>CountyName</th>\n",
73
+ " <th>BaseDate</th>\n",
74
+ " <th>Month Over Month % (Smoothed) (Seaonally Adjusted)</th>\n",
75
+ " <th>Quarter Over Quarter % (Smoothed) (Seaonally Adjusted)</th>\n",
76
+ " <th>Year Over Year % (Smoothed) (Seaonally Adjusted)</th>\n",
77
+ " <th>Month Over Month %</th>\n",
78
+ " <th>Quarter Over Quarter %</th>\n",
79
+ " <th>Year Over Year %</th>\n",
80
  " </tr>\n",
81
  " </thead>\n",
82
  " <tbody>\n",
83
  " <tr>\n",
84
  " <th>0</th>\n",
85
+ " <td>58001</td>\n",
86
+ " <td>30490</td>\n",
87
+ " <td>501</td>\n",
88
+ " <td>zip</td>\n",
89
+ " <td>NY</td>\n",
90
+ " <td>NY</td>\n",
91
+ " <td>Holtsville</td>\n",
92
+ " <td>New York-Newark-Jersey City, NY-NJ-PA</td>\n",
93
+ " <td>Suffolk County</td>\n",
94
  " <td>2023-12-31</td>\n",
 
 
 
 
 
 
 
95
  " <td>NaN</td>\n",
96
  " <td>NaN</td>\n",
97
  " <td>NaN</td>\n",
98
+ " <td>-0.7</td>\n",
99
+ " <td>-0.9</td>\n",
100
+ " <td>0.6</td>\n",
101
  " </tr>\n",
102
  " <tr>\n",
103
  " <th>1</th>\n",
104
+ " <td>58002</td>\n",
105
+ " <td>30490</td>\n",
106
+ " <td>544</td>\n",
107
+ " <td>zip</td>\n",
108
+ " <td>NY</td>\n",
109
  " <td>NY</td>\n",
110
+ " <td>Holtsville</td>\n",
111
+ " <td>New York-Newark-Jersey City, NY-NJ-PA</td>\n",
112
+ " <td>Suffolk County</td>\n",
113
  " <td>2023-12-31</td>\n",
 
 
 
 
 
 
 
114
  " <td>NaN</td>\n",
115
  " <td>NaN</td>\n",
116
  " <td>NaN</td>\n",
117
+ " <td>-0.7</td>\n",
118
+ " <td>-0.9</td>\n",
119
+ " <td>0.6</td>\n",
120
  " </tr>\n",
121
  " <tr>\n",
122
  " <th>2</th>\n",
123
+ " <td>58196</td>\n",
124
+ " <td>7440</td>\n",
125
+ " <td>1001</td>\n",
126
+ " <td>zip</td>\n",
127
+ " <td>MA</td>\n",
128
+ " <td>MA</td>\n",
129
+ " <td>Agawam</td>\n",
130
+ " <td>Springfield, MA</td>\n",
131
+ " <td>Hampden County</td>\n",
132
  " <td>2023-12-31</td>\n",
133
+ " <td>0.4</td>\n",
134
+ " <td>0.9</td>\n",
135
+ " <td>3.2</td>\n",
136
  " <td>-0.6</td>\n",
137
+ " <td>0.0</td>\n",
138
+ " <td>3.0</td>\n",
 
 
 
 
139
  " </tr>\n",
140
  " <tr>\n",
141
  " <th>3</th>\n",
142
+ " <td>58197</td>\n",
143
+ " <td>3911</td>\n",
144
+ " <td>1002</td>\n",
145
+ " <td>zip</td>\n",
146
+ " <td>MA</td>\n",
147
+ " <td>MA</td>\n",
148
+ " <td>Amherst</td>\n",
149
+ " <td>Springfield, MA</td>\n",
150
+ " <td>Hampshire County</td>\n",
151
  " <td>2023-12-31</td>\n",
152
+ " <td>0.2</td>\n",
153
+ " <td>0.7</td>\n",
154
+ " <td>2.7</td>\n",
155
+ " <td>-0.6</td>\n",
156
+ " <td>0.0</td>\n",
157
+ " <td>2.9</td>\n",
 
 
 
 
158
  " </tr>\n",
159
  " <tr>\n",
160
  " <th>4</th>\n",
161
+ " <td>58198</td>\n",
162
+ " <td>8838</td>\n",
163
+ " <td>1003</td>\n",
164
+ " <td>zip</td>\n",
165
+ " <td>MA</td>\n",
166
+ " <td>MA</td>\n",
167
+ " <td>Amherst</td>\n",
168
+ " <td>Springfield, MA</td>\n",
169
+ " <td>Hampshire County</td>\n",
170
  " <td>2023-12-31</td>\n",
 
 
 
 
 
 
 
171
  " <td>NaN</td>\n",
172
  " <td>NaN</td>\n",
173
  " <td>NaN</td>\n",
174
+ " <td>-0.7</td>\n",
175
+ " <td>0.0</td>\n",
176
+ " <td>3.4</td>\n",
177
  " </tr>\n",
178
  " <tr>\n",
179
  " <th>...</th>\n",
 
195
  " <td>...</td>\n",
196
  " </tr>\n",
197
  " <tr>\n",
198
+ " <th>31849</th>\n",
199
+ " <td>827279</td>\n",
200
+ " <td>7779</td>\n",
201
+ " <td>72405</td>\n",
202
  " <td>zip</td>\n",
203
+ " <td>AR</td>\n",
204
+ " <td>AR</td>\n",
205
+ " <td>Jonesboro</td>\n",
206
+ " <td>Jonesboro, AR</td>\n",
207
+ " <td>Craighead County</td>\n",
208
  " <td>2023-12-31</td>\n",
209
+ " <td>NaN</td>\n",
210
+ " <td>NaN</td>\n",
211
+ " <td>NaN</td>\n",
212
+ " <td>-0.7</td>\n",
213
+ " <td>0.0</td>\n",
214
+ " <td>2.5</td>\n",
 
 
 
 
215
  " </tr>\n",
216
  " <tr>\n",
217
+ " <th>31850</th>\n",
218
+ " <td>834213</td>\n",
219
+ " <td>30490</td>\n",
220
+ " <td>11437</td>\n",
221
  " <td>zip</td>\n",
222
+ " <td>NY</td>\n",
223
+ " <td>NY</td>\n",
224
+ " <td>New York</td>\n",
225
+ " <td>New York-Newark-Jersey City, NY-NJ-PA</td>\n",
226
+ " <td>Queens County</td>\n",
227
  " <td>2023-12-31</td>\n",
 
 
 
 
 
 
 
228
  " <td>NaN</td>\n",
229
+ " <td>NaN</td>\n",
230
+ " <td>NaN</td>\n",
231
+ " <td>-0.7</td>\n",
232
+ " <td>-0.9</td>\n",
233
+ " <td>0.6</td>\n",
234
  " </tr>\n",
235
  " <tr>\n",
236
+ " <th>31851</th>\n",
237
+ " <td>845914</td>\n",
238
+ " <td>6361</td>\n",
239
+ " <td>85288</td>\n",
240
  " <td>zip</td>\n",
241
+ " <td>AZ</td>\n",
242
+ " <td>AZ</td>\n",
243
+ " <td>Tempe</td>\n",
244
+ " <td>Phoenix-Mesa-Chandler, AZ</td>\n",
245
+ " <td>Maricopa County</td>\n",
246
  " <td>2023-12-31</td>\n",
 
 
 
 
 
 
 
247
  " <td>NaN</td>\n",
248
+ " <td>NaN</td>\n",
249
+ " <td>NaN</td>\n",
250
+ " <td>-1.0</td>\n",
251
+ " <td>0.0</td>\n",
252
+ " <td>4.5</td>\n",
253
  " </tr>\n",
254
  " <tr>\n",
255
+ " <th>31852</th>\n",
256
+ " <td>847854</td>\n",
257
  " <td>39992</td>\n",
258
+ " <td>20598</td>\n",
259
  " <td>zip</td>\n",
260
+ " <td>VA</td>\n",
261
+ " <td>VA</td>\n",
262
+ " <td>Arlington</td>\n",
263
+ " <td>Washington-Arlington-Alexandria, DC-VA-MD-WV</td>\n",
264
+ " <td>Arlington County</td>\n",
265
  " <td>2023-12-31</td>\n",
266
+ " <td>NaN</td>\n",
267
+ " <td>NaN</td>\n",
268
+ " <td>NaN</td>\n",
269
+ " <td>-0.4</td>\n",
270
+ " <td>0.9</td>\n",
271
+ " <td>1.2</td>\n",
 
 
 
 
272
  " </tr>\n",
273
  " <tr>\n",
274
+ " <th>31853</th>\n",
275
+ " <td>847855</td>\n",
276
+ " <td>30490</td>\n",
277
+ " <td>34249</td>\n",
278
  " <td>zip</td>\n",
279
+ " <td>FL</td>\n",
280
+ " <td>FL</td>\n",
281
+ " <td>Sarasota</td>\n",
282
+ " <td>North Port-Sarasota-Bradenton, FL</td>\n",
283
+ " <td>Sarasota County</td>\n",
284
  " <td>2023-12-31</td>\n",
285
+ " <td>NaN</td>\n",
286
+ " <td>NaN</td>\n",
287
+ " <td>NaN</td>\n",
288
+ " <td>-0.9</td>\n",
289
+ " <td>-0.1</td>\n",
290
+ " <td>5.4</td>\n",
 
 
 
 
291
  " </tr>\n",
292
  " </tbody>\n",
293
  "</table>\n",
294
+ "<p>31854 rows × 16 columns</p>\n",
295
  "</div>"
296
  ],
297
  "text/plain": [
298
+ " RegionID SizeRank RegionName RegionType StateName State City \\\n",
299
+ "0 58001 30490 501 zip NY NY Holtsville \n",
300
+ "1 58002 30490 544 zip NY NY Holtsville \n",
301
+ "2 58196 7440 1001 zip MA MA Agawam \n",
302
+ "3 58197 3911 1002 zip MA MA Amherst \n",
303
+ "4 58198 8838 1003 zip MA MA Amherst \n",
304
+ "... ... ... ... ... ... ... ... \n",
305
+ "31849 827279 7779 72405 zip AR AR Jonesboro \n",
306
+ "31850 834213 30490 11437 zip NY NY New York \n",
307
+ "31851 845914 6361 85288 zip AZ AZ Tempe \n",
308
+ "31852 847854 39992 20598 zip VA VA Arlington \n",
309
+ "31853 847855 30490 34249 zip FL FL Sarasota \n",
310
+ "\n",
311
+ " Metro CountyName \\\n",
312
+ "0 New York-Newark-Jersey City, NY-NJ-PA Suffolk County \n",
313
+ "1 New York-Newark-Jersey City, NY-NJ-PA Suffolk County \n",
314
+ "2 Springfield, MA Hampden County \n",
315
+ "3 Springfield, MA Hampshire County \n",
316
+ "4 Springfield, MA Hampshire County \n",
317
+ "... ... ... \n",
318
+ "31849 Jonesboro, AR Craighead County \n",
319
+ "31850 New York-Newark-Jersey City, NY-NJ-PA Queens County \n",
320
+ "31851 Phoenix-Mesa-Chandler, AZ Maricopa County \n",
321
+ "31852 Washington-Arlington-Alexandria, DC-VA-MD-WV Arlington County \n",
322
+ "31853 North Port-Sarasota-Bradenton, FL Sarasota County \n",
323
  "\n",
324
+ " BaseDate Month Over Month % (Smoothed) (Seaonally Adjusted) \\\n",
325
+ "0 2023-12-31 NaN \n",
326
+ "1 2023-12-31 NaN \n",
327
+ "2 2023-12-31 0.4 \n",
328
+ "3 2023-12-31 0.2 \n",
329
+ "4 2023-12-31 NaN \n",
330
+ "... ... ... \n",
331
+ "31849 2023-12-31 NaN \n",
332
+ "31850 2023-12-31 NaN \n",
333
+ "31851 2023-12-31 NaN \n",
334
+ "31852 2023-12-31 NaN \n",
335
+ "31853 2023-12-31 NaN \n",
336
  "\n",
337
+ " Quarter Over Quarter % (Smoothed) (Seaonally Adjusted) \\\n",
338
+ "0 NaN \n",
339
+ "1 NaN \n",
340
+ "2 0.9 \n",
341
+ "3 0.7 \n",
342
+ "4 NaN \n",
343
+ "... ... \n",
344
+ "31849 NaN \n",
345
+ "31850 NaN \n",
346
+ "31851 NaN \n",
347
+ "31852 NaN \n",
348
+ "31853 NaN \n",
349
  "\n",
350
+ " Year Over Year % (Smoothed) (Seaonally Adjusted) Month Over Month % \\\n",
351
+ "0 NaN -0.7 \n",
352
+ "1 NaN -0.7 \n",
353
+ "2 3.2 -0.6 \n",
354
+ "3 2.7 -0.6 \n",
355
+ "4 NaN -0.7 \n",
356
+ "... ... ... \n",
357
+ "31849 NaN -0.7 \n",
358
+ "31850 NaN -0.7 \n",
359
+ "31851 NaN -1.0 \n",
360
+ "31852 NaN -0.4 \n",
361
+ "31853 NaN -0.9 \n",
362
  "\n",
363
+ " Quarter Over Quarter % Year Over Year % \n",
364
+ "0 -0.9 0.6 \n",
365
+ "1 -0.9 0.6 \n",
366
+ "2 0.0 3.0 \n",
367
+ "3 0.0 2.9 \n",
368
+ "4 0.0 3.4 \n",
369
+ "... ... ... \n",
370
+ "31849 0.0 2.5 \n",
371
+ "31850 -0.9 0.6 \n",
372
+ "31851 0.0 4.5 \n",
373
+ "31852 0.9 1.2 \n",
374
+ "31853 -0.1 5.4 \n",
375
  "\n",
376
+ "[31854 rows x 16 columns]"
377
  ]
378
  },
379
+ "execution_count": 3,
380
  "metadata": {},
381
  "output_type": "execute_result"
382
  }
383
  ],
384
  "source": [
385
+ "data_frames = []\n",
386
+ "\n",
387
  "for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
388
  " if filename.endswith(\".csv\"):\n",
389
  " print(\"processing \" + filename)\n",
 
393
  " if filename.endswith(\"sm_sa_month.csv\"):\n",
394
  " # print('Smoothed')\n",
395
  " cur_df.columns = list(cur_df.columns[:-3]) + [\n",
396
+ " x + \" (Smoothed) (Seaonally Adjusted)\" for x in cols\n",
397
  " ]\n",
398
  " else:\n",
399
  " # print('Raw')\n",
400
+ " cur_df.columns = list(cur_df.columns[:-3]) + cols\n",
401
+ " cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
402
  "\n",
403
+ " data_frames.append(cur_df)\n",
 
 
404
  "\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405
  "\n",
406
+ "combined_df = get_combined_df(\n",
407
+ " data_frames,\n",
408
+ " [\n",
409
+ " \"RegionID\",\n",
410
+ " \"RegionType\",\n",
411
+ " \"SizeRank\",\n",
412
+ " \"StateName\",\n",
413
+ " \"BaseDate\",\n",
414
+ " ],\n",
415
+ ")\n",
416
  "\n",
417
+ "combined_df = coalesce_columns(combined_df)\n",
 
418
  "\n",
 
419
  "combined_df"
420
  ]
421
  },
422
  {
423
  "cell_type": "code",
424
+ "execution_count": 4,
425
  "metadata": {},
426
  "outputs": [
427
  {
 
446
  " <tr style=\"text-align: right;\">\n",
447
  " <th></th>\n",
448
  " <th>Region ID</th>\n",
449
+ " <th>Size Rank</th>\n",
450
  " <th>Region</th>\n",
451
  " <th>RegionType</th>\n",
 
452
  " <th>State</th>\n",
453
  " <th>City</th>\n",
454
  " <th>Metro</th>\n",
455
  " <th>County</th>\n",
456
  " <th>Date</th>\n",
457
+ " <th>Month Over Month % (Smoothed) (Seaonally Adjusted)</th>\n",
458
+ " <th>Quarter Over Quarter % (Smoothed) (Seaonally Adjusted)</th>\n",
459
+ " <th>Year Over Year % (Smoothed) (Seaonally Adjusted)</th>\n",
460
+ " <th>Month Over Month %</th>\n",
461
+ " <th>Quarter Over Quarter %</th>\n",
462
+ " <th>Year Over Year %</th>\n",
463
  " </tr>\n",
464
  " </thead>\n",
465
  " <tbody>\n",
466
  " <tr>\n",
467
  " <th>0</th>\n",
468
+ " <td>58001</td>\n",
469
+ " <td>30490</td>\n",
470
+ " <td>501</td>\n",
471
+ " <td>zip</td>\n",
472
+ " <td>NY</td>\n",
473
+ " <td>Holtsville</td>\n",
474
+ " <td>New York-Newark-Jersey City, NY-NJ-PA</td>\n",
475
+ " <td>Suffolk County</td>\n",
476
+ " <td>2023-12-31</td>\n",
477
  " <td>NaN</td>\n",
478
  " <td>NaN</td>\n",
479
  " <td>NaN</td>\n",
480
+ " <td>-0.7</td>\n",
481
+ " <td>-0.9</td>\n",
482
+ " <td>0.6</td>\n",
 
 
 
 
483
  " </tr>\n",
484
  " <tr>\n",
485
  " <th>1</th>\n",
486
+ " <td>58002</td>\n",
487
+ " <td>30490</td>\n",
488
+ " <td>544</td>\n",
489
+ " <td>zip</td>\n",
490
  " <td>NY</td>\n",
491
+ " <td>Holtsville</td>\n",
492
+ " <td>New York-Newark-Jersey City, NY-NJ-PA</td>\n",
493
+ " <td>Suffolk County</td>\n",
494
+ " <td>2023-12-31</td>\n",
495
+ " <td>NaN</td>\n",
496
  " <td>NaN</td>\n",
497
  " <td>NaN</td>\n",
 
 
 
 
498
  " <td>-0.7</td>\n",
499
  " <td>-0.9</td>\n",
500
  " <td>0.6</td>\n",
501
  " </tr>\n",
502
  " <tr>\n",
503
  " <th>2</th>\n",
504
+ " <td>58196</td>\n",
505
+ " <td>7440</td>\n",
506
+ " <td>1001</td>\n",
507
+ " <td>zip</td>\n",
508
+ " <td>MA</td>\n",
509
+ " <td>Agawam</td>\n",
510
+ " <td>Springfield, MA</td>\n",
511
+ " <td>Hampden County</td>\n",
512
  " <td>2023-12-31</td>\n",
513
+ " <td>0.4</td>\n",
514
+ " <td>0.9</td>\n",
515
+ " <td>3.2</td>\n",
516
  " <td>-0.6</td>\n",
517
+ " <td>0.0</td>\n",
518
+ " <td>3.0</td>\n",
519
  " </tr>\n",
520
  " <tr>\n",
521
  " <th>3</th>\n",
522
+ " <td>58197</td>\n",
523
+ " <td>3911</td>\n",
524
+ " <td>1002</td>\n",
525
+ " <td>zip</td>\n",
526
+ " <td>MA</td>\n",
527
+ " <td>Amherst</td>\n",
528
+ " <td>Springfield, MA</td>\n",
529
+ " <td>Hampshire County</td>\n",
530
  " <td>2023-12-31</td>\n",
531
+ " <td>0.2</td>\n",
532
+ " <td>0.7</td>\n",
533
+ " <td>2.7</td>\n",
534
+ " <td>-0.6</td>\n",
535
+ " <td>0.0</td>\n",
536
+ " <td>2.9</td>\n",
537
  " </tr>\n",
538
  " <tr>\n",
539
  " <th>4</th>\n",
540
+ " <td>58198</td>\n",
541
+ " <td>8838</td>\n",
542
+ " <td>1003</td>\n",
543
+ " <td>zip</td>\n",
544
+ " <td>MA</td>\n",
545
+ " <td>Amherst</td>\n",
546
+ " <td>Springfield, MA</td>\n",
547
+ " <td>Hampshire County</td>\n",
548
+ " <td>2023-12-31</td>\n",
549
  " <td>NaN</td>\n",
550
  " <td>NaN</td>\n",
551
+ " <td>NaN</td>\n",
552
+ " <td>-0.7</td>\n",
553
  " <td>0.0</td>\n",
554
+ " <td>3.4</td>\n",
 
 
 
555
  " </tr>\n",
556
  " <tr>\n",
557
  " <th>...</th>\n",
 
572
  " <td>...</td>\n",
573
  " </tr>\n",
574
  " <tr>\n",
575
+ " <th>31849</th>\n",
576
+ " <td>827279</td>\n",
577
+ " <td>7779</td>\n",
578
+ " <td>72405</td>\n",
579
  " <td>zip</td>\n",
580
+ " <td>AR</td>\n",
581
+ " <td>Jonesboro</td>\n",
582
+ " <td>Jonesboro, AR</td>\n",
583
+ " <td>Craighead County</td>\n",
 
584
  " <td>2023-12-31</td>\n",
585
+ " <td>NaN</td>\n",
586
+ " <td>NaN</td>\n",
587
+ " <td>NaN</td>\n",
588
+ " <td>-0.7</td>\n",
589
+ " <td>0.0</td>\n",
590
+ " <td>2.5</td>\n",
591
  " </tr>\n",
592
  " <tr>\n",
593
+ " <th>31850</th>\n",
594
+ " <td>834213</td>\n",
595
+ " <td>30490</td>\n",
596
+ " <td>11437</td>\n",
597
  " <td>zip</td>\n",
598
+ " <td>NY</td>\n",
599
+ " <td>New York</td>\n",
600
+ " <td>New York-Newark-Jersey City, NY-NJ-PA</td>\n",
601
+ " <td>Queens County</td>\n",
 
602
  " <td>2023-12-31</td>\n",
603
+ " <td>NaN</td>\n",
604
+ " <td>NaN</td>\n",
605
+ " <td>NaN</td>\n",
606
  " <td>-0.7</td>\n",
607
+ " <td>-0.9</td>\n",
608
+ " <td>0.6</td>\n",
609
  " </tr>\n",
610
  " <tr>\n",
611
+ " <th>31851</th>\n",
612
+ " <td>845914</td>\n",
613
+ " <td>6361</td>\n",
614
+ " <td>85288</td>\n",
615
  " <td>zip</td>\n",
616
+ " <td>AZ</td>\n",
617
+ " <td>Tempe</td>\n",
618
+ " <td>Phoenix-Mesa-Chandler, AZ</td>\n",
619
+ " <td>Maricopa County</td>\n",
 
620
  " <td>2023-12-31</td>\n",
621
+ " <td>NaN</td>\n",
622
+ " <td>NaN</td>\n",
623
+ " <td>NaN</td>\n",
624
+ " <td>-1.0</td>\n",
625
  " <td>0.0</td>\n",
626
+ " <td>4.5</td>\n",
627
  " </tr>\n",
628
  " <tr>\n",
629
+ " <th>31852</th>\n",
630
+ " <td>847854</td>\n",
 
 
631
  " <td>39992</td>\n",
632
+ " <td>20598</td>\n",
633
+ " <td>zip</td>\n",
634
+ " <td>VA</td>\n",
635
+ " <td>Arlington</td>\n",
636
+ " <td>Washington-Arlington-Alexandria, DC-VA-MD-WV</td>\n",
637
+ " <td>Arlington County</td>\n",
638
  " <td>2023-12-31</td>\n",
639
+ " <td>NaN</td>\n",
640
+ " <td>NaN</td>\n",
641
+ " <td>NaN</td>\n",
642
+ " <td>-0.4</td>\n",
643
+ " <td>0.9</td>\n",
644
+ " <td>1.2</td>\n",
645
  " </tr>\n",
646
  " <tr>\n",
647
+ " <th>31853</th>\n",
648
+ " <td>847855</td>\n",
649
+ " <td>30490</td>\n",
650
+ " <td>34249</td>\n",
651
  " <td>zip</td>\n",
652
+ " <td>FL</td>\n",
653
+ " <td>Sarasota</td>\n",
654
+ " <td>North Port-Sarasota-Bradenton, FL</td>\n",
655
+ " <td>Sarasota County</td>\n",
 
656
  " <td>2023-12-31</td>\n",
657
+ " <td>NaN</td>\n",
658
+ " <td>NaN</td>\n",
659
+ " <td>NaN</td>\n",
660
+ " <td>-0.9</td>\n",
661
+ " <td>-0.1</td>\n",
662
+ " <td>5.4</td>\n",
663
  " </tr>\n",
664
  " </tbody>\n",
665
  "</table>\n",
666
+ "<p>31854 rows × 15 columns</p>\n",
667
  "</div>"
668
  ],
669
  "text/plain": [
670
+ " Region ID Size Rank Region RegionType State City \\\n",
671
+ "0 58001 30490 501 zip NY Holtsville \n",
672
+ "1 58002 30490 544 zip NY Holtsville \n",
673
+ "2 58196 7440 1001 zip MA Agawam \n",
674
+ "3 58197 3911 1002 zip MA Amherst \n",
675
+ "4 58198 8838 1003 zip MA Amherst \n",
676
+ "... ... ... ... ... ... ... \n",
677
+ "31849 827279 7779 72405 zip AR Jonesboro \n",
678
+ "31850 834213 30490 11437 zip NY New York \n",
679
+ "31851 845914 6361 85288 zip AZ Tempe \n",
680
+ "31852 847854 39992 20598 zip VA Arlington \n",
681
+ "31853 847855 30490 34249 zip FL Sarasota \n",
682
  "\n",
683
+ " Metro County \\\n",
684
+ "0 New York-Newark-Jersey City, NY-NJ-PA Suffolk County \n",
685
+ "1 New York-Newark-Jersey City, NY-NJ-PA Suffolk County \n",
686
+ "2 Springfield, MA Hampden County \n",
687
+ "3 Springfield, MA Hampshire County \n",
688
+ "4 Springfield, MA Hampshire County \n",
689
+ "... ... ... \n",
690
+ "31849 Jonesboro, AR Craighead County \n",
691
+ "31850 New York-Newark-Jersey City, NY-NJ-PA Queens County \n",
692
+ "31851 Phoenix-Mesa-Chandler, AZ Maricopa County \n",
693
+ "31852 Washington-Arlington-Alexandria, DC-VA-MD-WV Arlington County \n",
694
+ "31853 North Port-Sarasota-Bradenton, FL Sarasota County \n",
695
  "\n",
696
+ " Date Month Over Month % (Smoothed) (Seaonally Adjusted) \\\n",
697
+ "0 2023-12-31 NaN \n",
698
+ "1 2023-12-31 NaN \n",
699
+ "2 2023-12-31 0.4 \n",
700
+ "3 2023-12-31 0.2 \n",
701
+ "4 2023-12-31 NaN \n",
702
+ "... ... ... \n",
703
+ "31849 2023-12-31 NaN \n",
704
+ "31850 2023-12-31 NaN \n",
705
+ "31851 2023-12-31 NaN \n",
706
+ "31852 2023-12-31 NaN \n",
707
+ "31853 2023-12-31 NaN \n",
708
  "\n",
709
+ " Quarter Over Quarter % (Smoothed) (Seaonally Adjusted) \\\n",
710
+ "0 NaN \n",
711
+ "1 NaN \n",
712
+ "2 0.9 \n",
713
+ "3 0.7 \n",
714
+ "4 NaN \n",
715
+ "... ... \n",
716
+ "31849 NaN \n",
717
+ "31850 NaN \n",
718
+ "31851 NaN \n",
719
+ "31852 NaN \n",
720
+ "31853 NaN \n",
721
  "\n",
722
+ " Year Over Year % (Smoothed) (Seaonally Adjusted) Month Over Month % \\\n",
723
+ "0 NaN -0.7 \n",
724
+ "1 NaN -0.7 \n",
725
+ "2 3.2 -0.6 \n",
726
+ "3 2.7 -0.6 \n",
727
+ "4 NaN -0.7 \n",
728
+ "... ... ... \n",
729
+ "31849 NaN -0.7 \n",
730
+ "31850 NaN -0.7 \n",
731
+ "31851 NaN -1.0 \n",
732
+ "31852 NaN -0.4 \n",
733
+ "31853 NaN -0.9 \n",
734
  "\n",
735
+ " Quarter Over Quarter % Year Over Year % \n",
736
+ "0 -0.9 0.6 \n",
737
+ "1 -0.9 0.6 \n",
738
+ "2 0.0 3.0 \n",
739
+ "3 0.0 2.9 \n",
740
+ "4 0.0 3.4 \n",
741
+ "... ... ... \n",
742
+ "31849 0.0 2.5 \n",
743
+ "31850 -0.9 0.6 \n",
744
+ "31851 0.0 4.5 \n",
745
+ "31852 0.9 1.2 \n",
746
+ "31853 -0.1 5.4 \n",
747
+ "\n",
748
+ "[31854 rows x 15 columns]"
749
  ]
750
  },
751
+ "execution_count": 4,
752
  "metadata": {},
753
  "output_type": "execute_result"
754
  }
755
  ],
756
  "source": [
757
+ "# Adjust columns\n",
758
+ "final_df = combined_df\n",
759
+ "final_df = combined_df.drop(\"StateName\", axis=1)\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760
  "final_df = final_df.rename(\n",
761
  " columns={\n",
762
  " \"CountyName\": \"County\",\n",
processors/home_values.ipynb CHANGED
@@ -2,19 +2,24 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 8,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
9
  "import pandas as pd\n",
10
  "import os\n",
11
  "\n",
12
- "from helpers import get_combined_df, coalesce_columns, get_df, save_final_df_as_jsonl"
 
 
 
 
 
13
  ]
14
  },
15
  {
16
  "cell_type": "code",
17
- "execution_count": 9,
18
  "metadata": {},
19
  "outputs": [],
20
  "source": [
@@ -27,7 +32,7 @@
27
  },
28
  {
29
  "cell_type": "code",
30
- "execution_count": 10,
31
  "metadata": {},
32
  "outputs": [
33
  {
@@ -122,15 +127,8 @@
122
  " <th>Home Type</th>\n",
123
  " <th>Date</th>\n",
124
  " <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
125
- " <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_1</th>\n",
126
- " <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_2</th>\n",
127
  " <th>Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
128
- " <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_4</th>\n",
129
- " <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_5</th>\n",
130
- " <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_6</th>\n",
131
  " <th>Top Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
132
- " <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_8</th>\n",
133
- " <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_9</th>\n",
134
  " </tr>\n",
135
  " </thead>\n",
136
  " <tbody>\n",
@@ -141,19 +139,12 @@
141
  " <td>Alaska</td>\n",
142
  " <td>state</td>\n",
143
  " <td>nan</td>\n",
144
- " <td>1-Bedrooms</td>\n",
145
  " <td>all homes (SFR/condo)</td>\n",
146
  " <td>2000-01-31</td>\n",
 
147
  " <td>NaN</td>\n",
148
  " <td>NaN</td>\n",
149
- " <td>NaN</td>\n",
150
- " <td>NaN</td>\n",
151
- " <td>NaN</td>\n",
152
- " <td>NaN</td>\n",
153
- " <td>NaN</td>\n",
154
- " <td>NaN</td>\n",
155
- " <td>NaN</td>\n",
156
- " <td>81310.639504</td>\n",
157
  " </tr>\n",
158
  " <tr>\n",
159
  " <th>1</th>\n",
@@ -162,19 +153,12 @@
162
  " <td>Alaska</td>\n",
163
  " <td>state</td>\n",
164
  " <td>nan</td>\n",
165
- " <td>1-Bedrooms</td>\n",
166
  " <td>all homes (SFR/condo)</td>\n",
167
  " <td>2000-02-29</td>\n",
 
168
  " <td>NaN</td>\n",
169
  " <td>NaN</td>\n",
170
- " <td>NaN</td>\n",
171
- " <td>NaN</td>\n",
172
- " <td>NaN</td>\n",
173
- " <td>NaN</td>\n",
174
- " <td>NaN</td>\n",
175
- " <td>NaN</td>\n",
176
- " <td>NaN</td>\n",
177
- " <td>80419.761984</td>\n",
178
  " </tr>\n",
179
  " <tr>\n",
180
  " <th>2</th>\n",
@@ -183,19 +167,12 @@
183
  " <td>Alaska</td>\n",
184
  " <td>state</td>\n",
185
  " <td>nan</td>\n",
186
- " <td>1-Bedrooms</td>\n",
187
  " <td>all homes (SFR/condo)</td>\n",
188
  " <td>2000-03-31</td>\n",
 
189
  " <td>NaN</td>\n",
190
  " <td>NaN</td>\n",
191
- " <td>NaN</td>\n",
192
- " <td>NaN</td>\n",
193
- " <td>NaN</td>\n",
194
- " <td>NaN</td>\n",
195
- " <td>NaN</td>\n",
196
- " <td>NaN</td>\n",
197
- " <td>NaN</td>\n",
198
- " <td>80480.449461</td>\n",
199
  " </tr>\n",
200
  " <tr>\n",
201
  " <th>3</th>\n",
@@ -204,19 +181,12 @@
204
  " <td>Alaska</td>\n",
205
  " <td>state</td>\n",
206
  " <td>nan</td>\n",
207
- " <td>1-Bedrooms</td>\n",
208
  " <td>all homes (SFR/condo)</td>\n",
209
  " <td>2000-04-30</td>\n",
 
210
  " <td>NaN</td>\n",
211
  " <td>NaN</td>\n",
212
- " <td>NaN</td>\n",
213
- " <td>NaN</td>\n",
214
- " <td>NaN</td>\n",
215
- " <td>NaN</td>\n",
216
- " <td>NaN</td>\n",
217
- " <td>NaN</td>\n",
218
- " <td>NaN</td>\n",
219
- " <td>79799.206525</td>\n",
220
  " </tr>\n",
221
  " <tr>\n",
222
  " <th>4</th>\n",
@@ -225,19 +195,12 @@
225
  " <td>Alaska</td>\n",
226
  " <td>state</td>\n",
227
  " <td>nan</td>\n",
228
- " <td>1-Bedrooms</td>\n",
229
  " <td>all homes (SFR/condo)</td>\n",
230
  " <td>2000-05-31</td>\n",
 
231
  " <td>NaN</td>\n",
232
  " <td>NaN</td>\n",
233
- " <td>NaN</td>\n",
234
- " <td>NaN</td>\n",
235
- " <td>NaN</td>\n",
236
- " <td>NaN</td>\n",
237
- " <td>NaN</td>\n",
238
- " <td>NaN</td>\n",
239
- " <td>NaN</td>\n",
240
- " <td>79666.469861</td>\n",
241
  " </tr>\n",
242
  " <tr>\n",
243
  " <th>...</th>\n",
@@ -252,13 +215,6 @@
252
  " <td>...</td>\n",
253
  " <td>...</td>\n",
254
  " <td>...</td>\n",
255
- " <td>...</td>\n",
256
- " <td>...</td>\n",
257
- " <td>...</td>\n",
258
- " <td>...</td>\n",
259
- " <td>...</td>\n",
260
- " <td>...</td>\n",
261
- " <td>...</td>\n",
262
  " </tr>\n",
263
  " <tr>\n",
264
  " <th>117907</th>\n",
@@ -270,16 +226,9 @@
270
  " <td>All Bedrooms</td>\n",
271
  " <td>condo</td>\n",
272
  " <td>2023-09-30</td>\n",
273
- " <td>NaN</td>\n",
274
- " <td>NaN</td>\n",
275
- " <td>NaN</td>\n",
276
- " <td>NaN</td>\n",
277
- " <td>NaN</td>\n",
278
  " <td>486974.735908</td>\n",
279
  " <td>NaN</td>\n",
280
  " <td>NaN</td>\n",
281
- " <td>NaN</td>\n",
282
- " <td>NaN</td>\n",
283
  " </tr>\n",
284
  " <tr>\n",
285
  " <th>117908</th>\n",
@@ -291,16 +240,9 @@
291
  " <td>All Bedrooms</td>\n",
292
  " <td>condo</td>\n",
293
  " <td>2023-10-31</td>\n",
294
- " <td>NaN</td>\n",
295
- " <td>NaN</td>\n",
296
- " <td>NaN</td>\n",
297
- " <td>NaN</td>\n",
298
- " <td>NaN</td>\n",
299
  " <td>485847.539614</td>\n",
300
  " <td>NaN</td>\n",
301
  " <td>NaN</td>\n",
302
- " <td>NaN</td>\n",
303
- " <td>NaN</td>\n",
304
  " </tr>\n",
305
  " <tr>\n",
306
  " <th>117909</th>\n",
@@ -312,16 +254,9 @@
312
  " <td>All Bedrooms</td>\n",
313
  " <td>condo</td>\n",
314
  " <td>2023-11-30</td>\n",
315
- " <td>NaN</td>\n",
316
- " <td>NaN</td>\n",
317
- " <td>NaN</td>\n",
318
- " <td>NaN</td>\n",
319
- " <td>NaN</td>\n",
320
  " <td>484223.885775</td>\n",
321
  " <td>NaN</td>\n",
322
  " <td>NaN</td>\n",
323
- " <td>NaN</td>\n",
324
- " <td>NaN</td>\n",
325
  " </tr>\n",
326
  " <tr>\n",
327
  " <th>117910</th>\n",
@@ -333,16 +268,9 @@
333
  " <td>All Bedrooms</td>\n",
334
  " <td>condo</td>\n",
335
  " <td>2023-12-31</td>\n",
336
- " <td>NaN</td>\n",
337
- " <td>NaN</td>\n",
338
- " <td>NaN</td>\n",
339
- " <td>NaN</td>\n",
340
- " <td>NaN</td>\n",
341
  " <td>481522.403338</td>\n",
342
  " <td>NaN</td>\n",
343
  " <td>NaN</td>\n",
344
- " <td>NaN</td>\n",
345
- " <td>NaN</td>\n",
346
  " </tr>\n",
347
  " <tr>\n",
348
  " <th>117911</th>\n",
@@ -354,29 +282,22 @@
354
  " <td>All Bedrooms</td>\n",
355
  " <td>condo</td>\n",
356
  " <td>2024-01-31</td>\n",
357
- " <td>NaN</td>\n",
358
- " <td>NaN</td>\n",
359
- " <td>NaN</td>\n",
360
- " <td>NaN</td>\n",
361
- " <td>NaN</td>\n",
362
  " <td>481181.718200</td>\n",
363
  " <td>NaN</td>\n",
364
  " <td>NaN</td>\n",
365
- " <td>NaN</td>\n",
366
- " <td>NaN</td>\n",
367
  " </tr>\n",
368
  " </tbody>\n",
369
  "</table>\n",
370
- "<p>117912 rows × 18 columns</p>\n",
371
  "</div>"
372
  ],
373
  "text/plain": [
374
  " RegionID SizeRank RegionName RegionType StateName Bedroom Count \\\n",
375
- "0 3 48 Alaska state nan 1-Bedrooms \n",
376
- "1 3 48 Alaska state nan 1-Bedrooms \n",
377
- "2 3 48 Alaska state nan 1-Bedrooms \n",
378
- "3 3 48 Alaska state nan 1-Bedrooms \n",
379
- "4 3 48 Alaska state nan 1-Bedrooms \n",
380
  "... ... ... ... ... ... ... \n",
381
  "117907 62 51 Wyoming state nan All Bedrooms \n",
382
  "117908 62 51 Wyoming state nan All Bedrooms \n",
@@ -398,43 +319,17 @@
398
  "117911 condo 2024-01-31 \n",
399
  "\n",
400
  " Mid Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
401
- "0 NaN \n",
402
- "1 NaN \n",
403
- "2 NaN \n",
404
- "3 NaN \n",
405
- "4 NaN \n",
406
  "... ... \n",
407
- "117907 NaN \n",
408
- "117908 NaN \n",
409
- "117909 NaN \n",
410
- "117910 NaN \n",
411
- "117911 NaN \n",
412
- "\n",
413
- " Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_1 \\\n",
414
- "0 NaN \n",
415
- "1 NaN \n",
416
- "2 NaN \n",
417
- "3 NaN \n",
418
- "4 NaN \n",
419
- "... ... \n",
420
- "117907 NaN \n",
421
- "117908 NaN \n",
422
- "117909 NaN \n",
423
- "117910 NaN \n",
424
- "117911 NaN \n",
425
- "\n",
426
- " Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_2 \\\n",
427
- "0 NaN \n",
428
- "1 NaN \n",
429
- "2 NaN \n",
430
- "3 NaN \n",
431
- "4 NaN \n",
432
- "... ... \n",
433
- "117907 NaN \n",
434
- "117908 NaN \n",
435
- "117909 NaN \n",
436
- "117910 NaN \n",
437
- "117911 NaN \n",
438
  "\n",
439
  " Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
440
  "0 NaN \n",
@@ -449,97 +344,37 @@
449
  "117910 NaN \n",
450
  "117911 NaN \n",
451
  "\n",
452
- " Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_4 \\\n",
453
- "0 NaN \n",
454
- "1 NaN \n",
455
- "2 NaN \n",
456
- "3 NaN \n",
457
- "4 NaN \n",
458
- "... ... \n",
459
- "117907 NaN \n",
460
- "117908 NaN \n",
461
- "117909 NaN \n",
462
- "117910 NaN \n",
463
- "117911 NaN \n",
464
- "\n",
465
- " Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_5 \\\n",
466
- "0 NaN \n",
467
- "1 NaN \n",
468
- "2 NaN \n",
469
- "3 NaN \n",
470
- "4 NaN \n",
471
- "... ... \n",
472
- "117907 486974.735908 \n",
473
- "117908 485847.539614 \n",
474
- "117909 484223.885775 \n",
475
- "117910 481522.403338 \n",
476
- "117911 481181.718200 \n",
477
- "\n",
478
- " Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_6 \\\n",
479
- "0 NaN \n",
480
- "1 NaN \n",
481
- "2 NaN \n",
482
- "3 NaN \n",
483
- "4 NaN \n",
484
- "... ... \n",
485
- "117907 NaN \n",
486
- "117908 NaN \n",
487
- "117909 NaN \n",
488
- "117910 NaN \n",
489
- "117911 NaN \n",
490
- "\n",
491
- " Top Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
492
- "0 NaN \n",
493
- "1 NaN \n",
494
- "2 NaN \n",
495
- "3 NaN \n",
496
- "4 NaN \n",
497
- "... ... \n",
498
- "117907 NaN \n",
499
- "117908 NaN \n",
500
- "117909 NaN \n",
501
- "117910 NaN \n",
502
- "117911 NaN \n",
503
  "\n",
504
- " Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_8 \\\n",
505
- "0 NaN \n",
506
- "1 NaN \n",
507
- "2 NaN \n",
508
- "3 NaN \n",
509
- "4 NaN \n",
510
- "... ... \n",
511
- "117907 NaN \n",
512
- "117908 NaN \n",
513
- "117909 NaN \n",
514
- "117910 NaN \n",
515
- "117911 NaN \n",
516
- "\n",
517
- " Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_9 \n",
518
- "0 81310.639504 \n",
519
- "1 80419.761984 \n",
520
- "2 80480.449461 \n",
521
- "3 79799.206525 \n",
522
- "4 79666.469861 \n",
523
- "... ... \n",
524
- "117907 NaN \n",
525
- "117908 NaN \n",
526
- "117909 NaN \n",
527
- "117910 NaN \n",
528
- "117911 NaN \n",
529
- "\n",
530
- "[117912 rows x 18 columns]"
531
  ]
532
  },
533
- "execution_count": 10,
534
  "metadata": {},
535
  "output_type": "execute_result"
536
  }
537
  ],
538
  "source": [
539
- "# base cols RegionID,SizeRank,RegionName,RegionType,StateName\n",
540
- "\n",
541
  "data_frames = []\n",
542
  "\n",
 
 
 
 
 
 
 
543
  "for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
544
  " if filename.endswith(\".csv\"):\n",
545
  " print(\"processing \" + filename)\n",
@@ -566,59 +401,23 @@
566
  " continue\n",
567
  "\n",
568
  " if \"City\" in filename:\n",
569
- " exclude_columns = [\n",
570
- " \"RegionID\",\n",
571
- " \"SizeRank\",\n",
572
- " \"RegionName\",\n",
573
- " \"RegionType\",\n",
574
- " \"StateName\",\n",
575
- " \"Bedroom Count\",\n",
576
- " \"Home Type\",\n",
577
- " # City Specific\n",
578
- " \"State\",\n",
579
- " \"Metro\",\n",
580
- " \"CountyName\",\n",
581
- " ]\n",
582
  " elif \"Zip\" in filename:\n",
583
- " exclude_columns = [\n",
584
- " \"RegionID\",\n",
585
- " \"SizeRank\",\n",
586
- " \"RegionName\",\n",
587
- " \"RegionType\",\n",
588
- " \"StateName\",\n",
589
- " \"Bedroom Count\",\n",
590
- " \"Home Type\",\n",
591
- " # Zip Specific\n",
592
  " \"State\",\n",
593
  " \"City\",\n",
594
  " \"Metro\",\n",
595
  " \"CountyName\",\n",
596
  " ]\n",
597
  " elif \"County\" in filename:\n",
598
- " exclude_columns = [\n",
599
- " \"RegionID\",\n",
600
- " \"SizeRank\",\n",
601
- " \"RegionName\",\n",
602
- " \"RegionType\",\n",
603
- " \"StateName\",\n",
604
- " \"Bedroom Count\",\n",
605
- " \"Home Type\",\n",
606
- " # County Specific\n",
607
  " \"State\",\n",
608
  " \"Metro\",\n",
609
  " \"StateCodeFIPS\",\n",
610
  " \"MunicipalCodeFIPS\",\n",
611
  " ]\n",
612
  " elif \"Neighborhood\" in filename:\n",
613
- " exclude_columns = [\n",
614
- " \"RegionID\",\n",
615
- " \"SizeRank\",\n",
616
- " \"RegionName\",\n",
617
- " \"RegionType\",\n",
618
- " \"StateName\",\n",
619
- " \"Bedroom Count\",\n",
620
- " \"Home Type\",\n",
621
- " # Neighborhood Specific\n",
622
  " \"State\",\n",
623
  " \"City\",\n",
624
  " \"Metro\",\n",
@@ -626,15 +425,15 @@
626
  " ]\n",
627
  "\n",
628
  " if \"_bdrmcnt_1_\" in filename:\n",
629
- " cur_df[\"Bedroom Count\"] = \"1-Bedrooms\"\n",
630
  " elif \"_bdrmcnt_2_\" in filename:\n",
631
  " cur_df[\"Bedroom Count\"] = \"2-Bedrooms\"\n",
632
  " elif \"_bdrmcnt_3_\" in filename:\n",
633
  " cur_df[\"Bedroom Count\"] = \"3-Bedrooms\"\n",
634
  " elif \"_bdrmcnt_4_\" in filename:\n",
635
- " cur_df[\"Bedroom Count\"] = \"4 Bedrooms\"\n",
636
  " elif \"_bdrmcnt_5_\" in filename:\n",
637
- " cur_df[\"Bedroom Count\"] = \"5+ Bedrooms\"\n",
638
  " else:\n",
639
  " cur_df[\"Bedroom Count\"] = \"All Bedrooms\"\n",
640
  "\n",
@@ -645,73 +444,12 @@
645
  " elif \"_uc_condo_\" in filename:\n",
646
  " cur_df[\"Home Type\"] = \"condo\"\n",
647
  "\n",
648
- " # Identify columns to pivot\n",
649
- " columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
650
- "\n",
651
- " smoothed = \"_sm_\" in filename\n",
652
- " seasonally_adjusted = \"_sa_\" in filename\n",
653
- "\n",
654
- " if \"_tier_0.33_0.67_\" in filename:\n",
655
- " col_name = \"Mid Tier ZHVI\"\n",
656
- " if smoothed:\n",
657
- " col_name += \" (Smoothed)\"\n",
658
- " if seasonally_adjusted:\n",
659
- " col_name += \" (Seasonally Adjusted)\"\n",
660
- "\n",
661
- " cur_df = pd.melt(\n",
662
- " cur_df,\n",
663
- " id_vars=exclude_columns,\n",
664
- " value_vars=columns_to_pivot,\n",
665
- " var_name=\"Date\",\n",
666
- " value_name=col_name,\n",
667
- " )\n",
668
- " elif \"_tier_0.0_0.33_\" in filename:\n",
669
- " col_name = \"Bottom Tier ZHVI\"\n",
670
- " if smoothed:\n",
671
- " col_name += \" (Smoothed)\"\n",
672
- " if seasonally_adjusted:\n",
673
- " col_name += \" (Seasonally Adjusted)\"\n",
674
- "\n",
675
- " cur_df = pd.melt(\n",
676
- " cur_df,\n",
677
- " id_vars=exclude_columns,\n",
678
- " value_vars=columns_to_pivot,\n",
679
- " var_name=\"Date\",\n",
680
- " value_name=col_name,\n",
681
- " )\n",
682
- " elif \"_tier_0.67_1.0_\" in filename:\n",
683
- " col_name = \"Top Tier ZHVI\"\n",
684
- " if smoothed:\n",
685
- " col_name += \" (Smoothed)\"\n",
686
- " if seasonally_adjusted:\n",
687
- " col_name += \" (Seasonally Adjusted)\"\n",
688
- "\n",
689
- " cur_df = pd.melt(\n",
690
- " cur_df,\n",
691
- " id_vars=exclude_columns,\n",
692
- " value_vars=columns_to_pivot,\n",
693
- " var_name=\"Date\",\n",
694
- " value_name=col_name,\n",
695
- " )\n",
696
- " else:\n",
697
- " col_name = \"ZHVI\"\n",
698
- " if smoothed:\n",
699
- " col_name += \" (Smoothed)\"\n",
700
- " if seasonally_adjusted:\n",
701
- " col_name += \" (Seasonally Adjusted)\"\n",
702
- "\n",
703
- " cur_df = pd.melt(\n",
704
- " cur_df,\n",
705
- " id_vars=exclude_columns,\n",
706
- " value_vars=columns_to_pivot,\n",
707
- " var_name=\"Date\",\n",
708
- " value_name=col_name,\n",
709
- " )\n",
710
- "\n",
711
  " cur_df[\"StateName\"] = cur_df[\"StateName\"].astype(str)\n",
712
  " cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
713
  "\n",
714
- " data_frames.append(cur_df)\n",
 
 
715
  "\n",
716
  "\n",
717
  "combined_df = get_combined_df(\n",
@@ -727,323 +465,8 @@
727
  " \"Date\",\n",
728
  " ],\n",
729
  ")\n",
730
- "combined_df"
731
- ]
732
- },
733
- {
734
- "cell_type": "code",
735
- "execution_count": 4,
736
- "metadata": {},
737
- "outputs": [
738
- {
739
- "data": {
740
- "text/html": [
741
- "<div>\n",
742
- "<style scoped>\n",
743
- " .dataframe tbody tr th:only-of-type {\n",
744
- " vertical-align: middle;\n",
745
- " }\n",
746
- "\n",
747
- " .dataframe tbody tr th {\n",
748
- " vertical-align: top;\n",
749
- " }\n",
750
- "\n",
751
- " .dataframe thead th {\n",
752
- " text-align: right;\n",
753
- " }\n",
754
- "</style>\n",
755
- "<table border=\"1\" class=\"dataframe\">\n",
756
- " <thead>\n",
757
- " <tr style=\"text-align: right;\">\n",
758
- " <th></th>\n",
759
- " <th>RegionID</th>\n",
760
- " <th>SizeRank</th>\n",
761
- " <th>RegionName</th>\n",
762
- " <th>RegionType</th>\n",
763
- " <th>StateName</th>\n",
764
- " <th>Bedroom Count</th>\n",
765
- " <th>Home Type</th>\n",
766
- " <th>Date</th>\n",
767
- " <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
768
- " <th>Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
769
- " <th>Top Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
770
- " <th>ZHVI</th>\n",
771
- " <th>Mid Tier ZHVI</th>\n",
772
- " </tr>\n",
773
- " </thead>\n",
774
- " <tbody>\n",
775
- " <tr>\n",
776
- " <th>0</th>\n",
777
- " <td>3</td>\n",
778
- " <td>48</td>\n",
779
- " <td>Alaska</td>\n",
780
- " <td>state</td>\n",
781
- " <td>nan</td>\n",
782
- " <td>1-Bedrooms</td>\n",
783
- " <td>all homes (SFR/condo)</td>\n",
784
- " <td>2000-01-31</td>\n",
785
- " <td>NaN</td>\n",
786
- " <td>NaN</td>\n",
787
- " <td>NaN</td>\n",
788
- " <td>81310.639504</td>\n",
789
- " <td>81310.639504</td>\n",
790
- " </tr>\n",
791
- " <tr>\n",
792
- " <th>1</th>\n",
793
- " <td>3</td>\n",
794
- " <td>48</td>\n",
795
- " <td>Alaska</td>\n",
796
- " <td>state</td>\n",
797
- " <td>nan</td>\n",
798
- " <td>1-Bedrooms</td>\n",
799
- " <td>all homes (SFR/condo)</td>\n",
800
- " <td>2000-02-29</td>\n",
801
- " <td>NaN</td>\n",
802
- " <td>NaN</td>\n",
803
- " <td>NaN</td>\n",
804
- " <td>80419.761984</td>\n",
805
- " <td>80419.761984</td>\n",
806
- " </tr>\n",
807
- " <tr>\n",
808
- " <th>2</th>\n",
809
- " <td>3</td>\n",
810
- " <td>48</td>\n",
811
- " <td>Alaska</td>\n",
812
- " <td>state</td>\n",
813
- " <td>nan</td>\n",
814
- " <td>1-Bedrooms</td>\n",
815
- " <td>all homes (SFR/condo)</td>\n",
816
- " <td>2000-03-31</td>\n",
817
- " <td>NaN</td>\n",
818
- " <td>NaN</td>\n",
819
- " <td>NaN</td>\n",
820
- " <td>80480.449461</td>\n",
821
- " <td>80480.449461</td>\n",
822
- " </tr>\n",
823
- " <tr>\n",
824
- " <th>3</th>\n",
825
- " <td>3</td>\n",
826
- " <td>48</td>\n",
827
- " <td>Alaska</td>\n",
828
- " <td>state</td>\n",
829
- " <td>nan</td>\n",
830
- " <td>1-Bedrooms</td>\n",
831
- " <td>all homes (SFR/condo)</td>\n",
832
- " <td>2000-04-30</td>\n",
833
- " <td>NaN</td>\n",
834
- " <td>NaN</td>\n",
835
- " <td>NaN</td>\n",
836
- " <td>79799.206525</td>\n",
837
- " <td>79799.206525</td>\n",
838
- " </tr>\n",
839
- " <tr>\n",
840
- " <th>4</th>\n",
841
- " <td>3</td>\n",
842
- " <td>48</td>\n",
843
- " <td>Alaska</td>\n",
844
- " <td>state</td>\n",
845
- " <td>nan</td>\n",
846
- " <td>1-Bedrooms</td>\n",
847
- " <td>all homes (SFR/condo)</td>\n",
848
- " <td>2000-05-31</td>\n",
849
- " <td>NaN</td>\n",
850
- " <td>NaN</td>\n",
851
- " <td>NaN</td>\n",
852
- " <td>79666.469861</td>\n",
853
- " <td>79666.469861</td>\n",
854
- " </tr>\n",
855
- " <tr>\n",
856
- " <th>...</th>\n",
857
- " <td>...</td>\n",
858
- " <td>...</td>\n",
859
- " <td>...</td>\n",
860
- " <td>...</td>\n",
861
- " <td>...</td>\n",
862
- " <td>...</td>\n",
863
- " <td>...</td>\n",
864
- " <td>...</td>\n",
865
- " <td>...</td>\n",
866
- " <td>...</td>\n",
867
- " <td>...</td>\n",
868
- " <td>...</td>\n",
869
- " <td>...</td>\n",
870
- " </tr>\n",
871
- " <tr>\n",
872
- " <th>117907</th>\n",
873
- " <td>62</td>\n",
874
- " <td>51</td>\n",
875
- " <td>Wyoming</td>\n",
876
- " <td>state</td>\n",
877
- " <td>nan</td>\n",
878
- " <td>All Bedrooms</td>\n",
879
- " <td>condo</td>\n",
880
- " <td>2023-09-30</td>\n",
881
- " <td>NaN</td>\n",
882
- " <td>NaN</td>\n",
883
- " <td>NaN</td>\n",
884
- " <td>486974.735908</td>\n",
885
- " <td>486974.735908</td>\n",
886
- " </tr>\n",
887
- " <tr>\n",
888
- " <th>117908</th>\n",
889
- " <td>62</td>\n",
890
- " <td>51</td>\n",
891
- " <td>Wyoming</td>\n",
892
- " <td>state</td>\n",
893
- " <td>nan</td>\n",
894
- " <td>All Bedrooms</td>\n",
895
- " <td>condo</td>\n",
896
- " <td>2023-10-31</td>\n",
897
- " <td>NaN</td>\n",
898
- " <td>NaN</td>\n",
899
- " <td>NaN</td>\n",
900
- " <td>485847.539614</td>\n",
901
- " <td>485847.539614</td>\n",
902
- " </tr>\n",
903
- " <tr>\n",
904
- " <th>117909</th>\n",
905
- " <td>62</td>\n",
906
- " <td>51</td>\n",
907
- " <td>Wyoming</td>\n",
908
- " <td>state</td>\n",
909
- " <td>nan</td>\n",
910
- " <td>All Bedrooms</td>\n",
911
- " <td>condo</td>\n",
912
- " <td>2023-11-30</td>\n",
913
- " <td>NaN</td>\n",
914
- " <td>NaN</td>\n",
915
- " <td>NaN</td>\n",
916
- " <td>484223.885775</td>\n",
917
- " <td>484223.885775</td>\n",
918
- " </tr>\n",
919
- " <tr>\n",
920
- " <th>117910</th>\n",
921
- " <td>62</td>\n",
922
- " <td>51</td>\n",
923
- " <td>Wyoming</td>\n",
924
- " <td>state</td>\n",
925
- " <td>nan</td>\n",
926
- " <td>All Bedrooms</td>\n",
927
- " <td>condo</td>\n",
928
- " <td>2023-12-31</td>\n",
929
- " <td>NaN</td>\n",
930
- " <td>NaN</td>\n",
931
- " <td>NaN</td>\n",
932
- " <td>481522.403338</td>\n",
933
- " <td>481522.403338</td>\n",
934
- " </tr>\n",
935
- " <tr>\n",
936
- " <th>117911</th>\n",
937
- " <td>62</td>\n",
938
- " <td>51</td>\n",
939
- " <td>Wyoming</td>\n",
940
- " <td>state</td>\n",
941
- " <td>nan</td>\n",
942
- " <td>All Bedrooms</td>\n",
943
- " <td>condo</td>\n",
944
- " <td>2024-01-31</td>\n",
945
- " <td>NaN</td>\n",
946
- " <td>NaN</td>\n",
947
- " <td>NaN</td>\n",
948
- " <td>481181.718200</td>\n",
949
- " <td>481181.718200</td>\n",
950
- " </tr>\n",
951
- " </tbody>\n",
952
- "</table>\n",
953
- "<p>117912 rows × 13 columns</p>\n",
954
- "</div>"
955
- ],
956
- "text/plain": [
957
- " RegionID SizeRank RegionName RegionType StateName Bedroom Count \\\n",
958
- "0 3 48 Alaska state nan 1-Bedrooms \n",
959
- "1 3 48 Alaska state nan 1-Bedrooms \n",
960
- "2 3 48 Alaska state nan 1-Bedrooms \n",
961
- "3 3 48 Alaska state nan 1-Bedrooms \n",
962
- "4 3 48 Alaska state nan 1-Bedrooms \n",
963
- "... ... ... ... ... ... ... \n",
964
- "117907 62 51 Wyoming state nan All Bedrooms \n",
965
- "117908 62 51 Wyoming state nan All Bedrooms \n",
966
- "117909 62 51 Wyoming state nan All Bedrooms \n",
967
- "117910 62 51 Wyoming state nan All Bedrooms \n",
968
- "117911 62 51 Wyoming state nan All Bedrooms \n",
969
- "\n",
970
- " Home Type Date \\\n",
971
- "0 all homes (SFR/condo) 2000-01-31 \n",
972
- "1 all homes (SFR/condo) 2000-02-29 \n",
973
- "2 all homes (SFR/condo) 2000-03-31 \n",
974
- "3 all homes (SFR/condo) 2000-04-30 \n",
975
- "4 all homes (SFR/condo) 2000-05-31 \n",
976
- "... ... ... \n",
977
- "117907 condo 2023-09-30 \n",
978
- "117908 condo 2023-10-31 \n",
979
- "117909 condo 2023-11-30 \n",
980
- "117910 condo 2023-12-31 \n",
981
- "117911 condo 2024-01-31 \n",
982
- "\n",
983
- " Mid Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
984
- "0 NaN \n",
985
- "1 NaN \n",
986
- "2 NaN \n",
987
- "3 NaN \n",
988
- "4 NaN \n",
989
- "... ... \n",
990
- "117907 NaN \n",
991
- "117908 NaN \n",
992
- "117909 NaN \n",
993
- "117910 NaN \n",
994
- "117911 NaN \n",
995
- "\n",
996
- " Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
997
- "0 NaN \n",
998
- "1 NaN \n",
999
- "2 NaN \n",
1000
- "3 NaN \n",
1001
- "4 NaN \n",
1002
- "... ... \n",
1003
- "117907 NaN \n",
1004
- "117908 NaN \n",
1005
- "117909 NaN \n",
1006
- "117910 NaN \n",
1007
- "117911 NaN \n",
1008
- "\n",
1009
- " Top Tier ZHVI (Smoothed) (Seasonally Adjusted) ZHVI \\\n",
1010
- "0 NaN 81310.639504 \n",
1011
- "1 NaN 80419.761984 \n",
1012
- "2 NaN 80480.449461 \n",
1013
- "3 NaN 79799.206525 \n",
1014
- "4 NaN 79666.469861 \n",
1015
- "... ... ... \n",
1016
- "117907 NaN 486974.735908 \n",
1017
- "117908 NaN 485847.539614 \n",
1018
- "117909 NaN 484223.885775 \n",
1019
- "117910 NaN 481522.403338 \n",
1020
- "117911 NaN 481181.718200 \n",
1021
- "\n",
1022
- " Mid Tier ZHVI \n",
1023
- "0 81310.639504 \n",
1024
- "1 80419.761984 \n",
1025
- "2 80480.449461 \n",
1026
- "3 79799.206525 \n",
1027
- "4 79666.469861 \n",
1028
- "... ... \n",
1029
- "117907 486974.735908 \n",
1030
- "117908 485847.539614 \n",
1031
- "117909 484223.885775 \n",
1032
- "117910 481522.403338 \n",
1033
- "117911 481181.718200 \n",
1034
- "\n",
1035
- "[117912 rows x 13 columns]"
1036
- ]
1037
- },
1038
- "execution_count": 4,
1039
- "metadata": {},
1040
- "output_type": "execute_result"
1041
- }
1042
- ],
1043
- "source": [
1044
- "columns_to_coalesce = [\"ZHVI\", \"Mid Tier ZHVI\", \"Bottom Tier ZHVI\", \"Top Tier ZHVI\"]\n",
1045
  "\n",
1046
- "combined_df = coalesce_columns(combined_df, columns_to_coalesce)\n",
1047
  "\n",
1048
  "combined_df"
1049
  ]
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
9
  "import pandas as pd\n",
10
  "import os\n",
11
  "\n",
12
+ "from helpers import (\n",
13
+ " get_combined_df,\n",
14
+ " coalesce_columns,\n",
15
+ " save_final_df_as_jsonl,\n",
16
+ " handle_slug_column_mappings,\n",
17
+ ")"
18
  ]
19
  },
20
  {
21
  "cell_type": "code",
22
+ "execution_count": 2,
23
  "metadata": {},
24
  "outputs": [],
25
  "source": [
 
32
  },
33
  {
34
  "cell_type": "code",
35
+ "execution_count": 5,
36
  "metadata": {},
37
  "outputs": [
38
  {
 
127
  " <th>Home Type</th>\n",
128
  " <th>Date</th>\n",
129
  " <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
 
 
130
  " <th>Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
 
 
 
131
  " <th>Top Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
 
 
132
  " </tr>\n",
133
  " </thead>\n",
134
  " <tbody>\n",
 
139
  " <td>Alaska</td>\n",
140
  " <td>state</td>\n",
141
  " <td>nan</td>\n",
142
+ " <td>1-Bedroom</td>\n",
143
  " <td>all homes (SFR/condo)</td>\n",
144
  " <td>2000-01-31</td>\n",
145
+ " <td>81310.639504</td>\n",
146
  " <td>NaN</td>\n",
147
  " <td>NaN</td>\n",
 
 
 
 
 
 
 
 
148
  " </tr>\n",
149
  " <tr>\n",
150
  " <th>1</th>\n",
 
153
  " <td>Alaska</td>\n",
154
  " <td>state</td>\n",
155
  " <td>nan</td>\n",
156
+ " <td>1-Bedroom</td>\n",
157
  " <td>all homes (SFR/condo)</td>\n",
158
  " <td>2000-02-29</td>\n",
159
+ " <td>80419.761984</td>\n",
160
  " <td>NaN</td>\n",
161
  " <td>NaN</td>\n",
 
 
 
 
 
 
 
 
162
  " </tr>\n",
163
  " <tr>\n",
164
  " <th>2</th>\n",
 
167
  " <td>Alaska</td>\n",
168
  " <td>state</td>\n",
169
  " <td>nan</td>\n",
170
+ " <td>1-Bedroom</td>\n",
171
  " <td>all homes (SFR/condo)</td>\n",
172
  " <td>2000-03-31</td>\n",
173
+ " <td>80480.449461</td>\n",
174
  " <td>NaN</td>\n",
175
  " <td>NaN</td>\n",
 
 
 
 
 
 
 
 
176
  " </tr>\n",
177
  " <tr>\n",
178
  " <th>3</th>\n",
 
181
  " <td>Alaska</td>\n",
182
  " <td>state</td>\n",
183
  " <td>nan</td>\n",
184
+ " <td>1-Bedroom</td>\n",
185
  " <td>all homes (SFR/condo)</td>\n",
186
  " <td>2000-04-30</td>\n",
187
+ " <td>79799.206525</td>\n",
188
  " <td>NaN</td>\n",
189
  " <td>NaN</td>\n",
 
 
 
 
 
 
 
 
190
  " </tr>\n",
191
  " <tr>\n",
192
  " <th>4</th>\n",
 
195
  " <td>Alaska</td>\n",
196
  " <td>state</td>\n",
197
  " <td>nan</td>\n",
198
+ " <td>1-Bedroom</td>\n",
199
  " <td>all homes (SFR/condo)</td>\n",
200
  " <td>2000-05-31</td>\n",
201
+ " <td>79666.469861</td>\n",
202
  " <td>NaN</td>\n",
203
  " <td>NaN</td>\n",
 
 
 
 
 
 
 
 
204
  " </tr>\n",
205
  " <tr>\n",
206
  " <th>...</th>\n",
 
215
  " <td>...</td>\n",
216
  " <td>...</td>\n",
217
  " <td>...</td>\n",
 
 
 
 
 
 
 
218
  " </tr>\n",
219
  " <tr>\n",
220
  " <th>117907</th>\n",
 
226
  " <td>All Bedrooms</td>\n",
227
  " <td>condo</td>\n",
228
  " <td>2023-09-30</td>\n",
 
 
 
 
 
229
  " <td>486974.735908</td>\n",
230
  " <td>NaN</td>\n",
231
  " <td>NaN</td>\n",
 
 
232
  " </tr>\n",
233
  " <tr>\n",
234
  " <th>117908</th>\n",
 
240
  " <td>All Bedrooms</td>\n",
241
  " <td>condo</td>\n",
242
  " <td>2023-10-31</td>\n",
 
 
 
 
 
243
  " <td>485847.539614</td>\n",
244
  " <td>NaN</td>\n",
245
  " <td>NaN</td>\n",
 
 
246
  " </tr>\n",
247
  " <tr>\n",
248
  " <th>117909</th>\n",
 
254
  " <td>All Bedrooms</td>\n",
255
  " <td>condo</td>\n",
256
  " <td>2023-11-30</td>\n",
 
 
 
 
 
257
  " <td>484223.885775</td>\n",
258
  " <td>NaN</td>\n",
259
  " <td>NaN</td>\n",
 
 
260
  " </tr>\n",
261
  " <tr>\n",
262
  " <th>117910</th>\n",
 
268
  " <td>All Bedrooms</td>\n",
269
  " <td>condo</td>\n",
270
  " <td>2023-12-31</td>\n",
 
 
 
 
 
271
  " <td>481522.403338</td>\n",
272
  " <td>NaN</td>\n",
273
  " <td>NaN</td>\n",
 
 
274
  " </tr>\n",
275
  " <tr>\n",
276
  " <th>117911</th>\n",
 
282
  " <td>All Bedrooms</td>\n",
283
  " <td>condo</td>\n",
284
  " <td>2024-01-31</td>\n",
 
 
 
 
 
285
  " <td>481181.718200</td>\n",
286
  " <td>NaN</td>\n",
287
  " <td>NaN</td>\n",
 
 
288
  " </tr>\n",
289
  " </tbody>\n",
290
  "</table>\n",
291
+ "<p>117912 rows × 11 columns</p>\n",
292
  "</div>"
293
  ],
294
  "text/plain": [
295
  " RegionID SizeRank RegionName RegionType StateName Bedroom Count \\\n",
296
+ "0 3 48 Alaska state nan 1-Bedroom \n",
297
+ "1 3 48 Alaska state nan 1-Bedroom \n",
298
+ "2 3 48 Alaska state nan 1-Bedroom \n",
299
+ "3 3 48 Alaska state nan 1-Bedroom \n",
300
+ "4 3 48 Alaska state nan 1-Bedroom \n",
301
  "... ... ... ... ... ... ... \n",
302
  "117907 62 51 Wyoming state nan All Bedrooms \n",
303
  "117908 62 51 Wyoming state nan All Bedrooms \n",
 
319
  "117911 condo 2024-01-31 \n",
320
  "\n",
321
  " Mid Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
322
+ "0 81310.639504 \n",
323
+ "1 80419.761984 \n",
324
+ "2 80480.449461 \n",
325
+ "3 79799.206525 \n",
326
+ "4 79666.469861 \n",
327
  "... ... \n",
328
+ "117907 486974.735908 \n",
329
+ "117908 485847.539614 \n",
330
+ "117909 484223.885775 \n",
331
+ "117910 481522.403338 \n",
332
+ "117911 481181.718200 \n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333
  "\n",
334
  " Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
335
  "0 NaN \n",
 
344
  "117910 NaN \n",
345
  "117911 NaN \n",
346
  "\n",
347
+ " Top Tier ZHVI (Smoothed) (Seasonally Adjusted) \n",
348
+ "0 NaN \n",
349
+ "1 NaN \n",
350
+ "2 NaN \n",
351
+ "3 NaN \n",
352
+ "4 NaN \n",
353
+ "... ... \n",
354
+ "117907 NaN \n",
355
+ "117908 NaN \n",
356
+ "117909 NaN \n",
357
+ "117910 NaN \n",
358
+ "117911 NaN \n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359
  "\n",
360
+ "[117912 rows x 11 columns]"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361
  ]
362
  },
363
+ "execution_count": 5,
364
  "metadata": {},
365
  "output_type": "execute_result"
366
  }
367
  ],
368
  "source": [
 
 
369
  "data_frames = []\n",
370
  "\n",
371
+ "slug_column_mappings = {\n",
372
+ " \"_tier_0.0_0.33_\": \"Bottom Tier ZHVI\",\n",
373
+ " \"_tier_0.33_0.67_\": \"Mid Tier ZHVI\",\n",
374
+ " \"_tier_0.67_1.0_\": \"Top Tier ZHVI\",\n",
375
+ " \"\": \"ZHVI\",\n",
376
+ "}\n",
377
+ "\n",
378
  "for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
379
  " if filename.endswith(\".csv\"):\n",
380
  " print(\"processing \" + filename)\n",
 
401
  " continue\n",
402
  "\n",
403
  " if \"City\" in filename:\n",
404
+ " exclude_columns = exclude_columns + [\"State\", \"Metro\", \"CountyName\"]\n",
 
 
 
 
 
 
 
 
 
 
 
 
405
  " elif \"Zip\" in filename:\n",
406
+ " exclude_columns = exclude_columns + [\n",
 
 
 
 
 
 
 
 
407
  " \"State\",\n",
408
  " \"City\",\n",
409
  " \"Metro\",\n",
410
  " \"CountyName\",\n",
411
  " ]\n",
412
  " elif \"County\" in filename:\n",
413
+ " exclude_columns = exclude_columns + [\n",
 
 
 
 
 
 
 
 
414
  " \"State\",\n",
415
  " \"Metro\",\n",
416
  " \"StateCodeFIPS\",\n",
417
  " \"MunicipalCodeFIPS\",\n",
418
  " ]\n",
419
  " elif \"Neighborhood\" in filename:\n",
420
+ " exclude_columns = exclude_columns + [\n",
 
 
 
 
 
 
 
 
421
  " \"State\",\n",
422
  " \"City\",\n",
423
  " \"Metro\",\n",
 
425
  " ]\n",
426
  "\n",
427
  " if \"_bdrmcnt_1_\" in filename:\n",
428
+ " cur_df[\"Bedroom Count\"] = \"1-Bedroom\"\n",
429
  " elif \"_bdrmcnt_2_\" in filename:\n",
430
  " cur_df[\"Bedroom Count\"] = \"2-Bedrooms\"\n",
431
  " elif \"_bdrmcnt_3_\" in filename:\n",
432
  " cur_df[\"Bedroom Count\"] = \"3-Bedrooms\"\n",
433
  " elif \"_bdrmcnt_4_\" in filename:\n",
434
+ " cur_df[\"Bedroom Count\"] = \"4-Bedrooms\"\n",
435
  " elif \"_bdrmcnt_5_\" in filename:\n",
436
+ " cur_df[\"Bedroom Count\"] = \"5+-Bedrooms\"\n",
437
  " else:\n",
438
  " cur_df[\"Bedroom Count\"] = \"All Bedrooms\"\n",
439
  "\n",
 
444
  " elif \"_uc_condo_\" in filename:\n",
445
  " cur_df[\"Home Type\"] = \"condo\"\n",
446
  "\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447
  " cur_df[\"StateName\"] = cur_df[\"StateName\"].astype(str)\n",
448
  " cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
449
  "\n",
450
+ " data_frames = handle_slug_column_mappings(\n",
451
+ " data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
452
+ " )\n",
453
  "\n",
454
  "\n",
455
  "combined_df = get_combined_df(\n",
 
465
  " \"Date\",\n",
466
  " ],\n",
467
  ")\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468
  "\n",
469
+ "combined_df = coalesce_columns(combined_df)\n",
470
  "\n",
471
  "combined_df"
472
  ]
processors/new_construction.ipynb CHANGED
@@ -9,7 +9,12 @@
9
  "import pandas as pd\n",
10
  "import os\n",
11
  "\n",
12
- "from helpers import get_combined_df, coalesce_columns, get_df, save_final_df_as_jsonl"
 
 
 
 
 
13
  ]
14
  },
15
  {
@@ -263,8 +268,6 @@
263
  }
264
  ],
265
  "source": [
266
- "# base cols RegionID,SizeRank,RegionName,RegionType,StateName\n",
267
- "\n",
268
  "exclude_columns = [\n",
269
  " \"RegionID\",\n",
270
  " \"SizeRank\",\n",
@@ -274,6 +277,12 @@
274
  " \"Home Type\",\n",
275
  "]\n",
276
  "\n",
 
 
 
 
 
 
277
  "data_frames = []\n",
278
  "\n",
279
  "for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
@@ -288,38 +297,9 @@
288
  " elif \"condo\" in filename:\n",
289
  " cur_df[\"Home Type\"] = \"condo/co-op only\"\n",
290
  "\n",
291
- " # Identify columns to pivot\n",
292
- " columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
293
- "\n",
294
- " if \"median_sale_price_per_sqft\" in filename:\n",
295
- " cur_df = pd.melt(\n",
296
- " cur_df,\n",
297
- " id_vars=exclude_columns,\n",
298
- " value_vars=columns_to_pivot,\n",
299
- " var_name=\"Date\",\n",
300
- " value_name=\"Median Sale Price per Sqft\",\n",
301
- " )\n",
302
- " data_frames.append(cur_df)\n",
303
- "\n",
304
- " elif \"median_sale_price\" in filename:\n",
305
- " cur_df = pd.melt(\n",
306
- " cur_df,\n",
307
- " id_vars=exclude_columns,\n",
308
- " value_vars=columns_to_pivot,\n",
309
- " var_name=\"Date\",\n",
310
- " value_name=\"Median Sale Price\",\n",
311
- " )\n",
312
- " data_frames.append(cur_df)\n",
313
- "\n",
314
- " elif \"sales_count\" in filename:\n",
315
- " cur_df = pd.melt(\n",
316
- " cur_df,\n",
317
- " id_vars=exclude_columns,\n",
318
- " value_vars=columns_to_pivot,\n",
319
- " var_name=\"Date\",\n",
320
- " value_name=\"Sales Count\",\n",
321
- " )\n",
322
- " data_frames.append(cur_df)\n",
323
  "\n",
324
  "\n",
325
  "combined_df = get_combined_df(\n",
@@ -334,10 +314,8 @@
334
  " \"Date\",\n",
335
  " ],\n",
336
  ")\n",
337
- "# iterate over rows of combined df and coalesce column values across columns that start with \"Median Sale Price\"\n",
338
- "columns_to_coalesce = [\"Sales Count\", \"Median Sale Price\", \"Median Sale Price per Sqft\"]\n",
339
  "\n",
340
- "combined_df = coalesce_columns(combined_df, columns_to_coalesce)\n",
341
  "\n",
342
  "combined_df"
343
  ]
 
9
  "import pandas as pd\n",
10
  "import os\n",
11
  "\n",
12
+ "from helpers import (\n",
13
+ " get_combined_df,\n",
14
+ " coalesce_columns,\n",
15
+ " save_final_df_as_jsonl,\n",
16
+ " handle_slug_column_mappings,\n",
17
+ ")"
18
  ]
19
  },
20
  {
 
268
  }
269
  ],
270
  "source": [
 
 
271
  "exclude_columns = [\n",
272
  " \"RegionID\",\n",
273
  " \"SizeRank\",\n",
 
277
  " \"Home Type\",\n",
278
  "]\n",
279
  "\n",
280
+ "slug_column_mappings = {\n",
281
+ " \"_median_sale_price_per_sqft\": \"Median Sale Price per Sqft\",\n",
282
+ " \"_median_sale_price\": \"Median Sale Price\",\n",
283
+ " \"sales_count\": \"Sales Count\",\n",
284
+ "}\n",
285
+ "\n",
286
  "data_frames = []\n",
287
  "\n",
288
  "for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
 
297
  " elif \"condo\" in filename:\n",
298
  " cur_df[\"Home Type\"] = \"condo/co-op only\"\n",
299
  "\n",
300
+ " data_frames = handle_slug_column_mappings(\n",
301
+ " data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
302
+ " )\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303
  "\n",
304
  "\n",
305
  "combined_df = get_combined_df(\n",
 
314
  " \"Date\",\n",
315
  " ],\n",
316
  ")\n",
 
 
317
  "\n",
318
+ "combined_df = coalesce_columns(combined_df)\n",
319
  "\n",
320
  "combined_df"
321
  ]
processors/rentals.ipynb CHANGED
@@ -2,19 +2,24 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
9
  "import pandas as pd\n",
10
  "import os\n",
11
  "\n",
12
- "from helpers import get_combined_df, coalesce_columns, get_df, save_final_df_as_jsonl"
 
 
 
 
 
13
  ]
14
  },
15
  {
16
  "cell_type": "code",
17
- "execution_count": 2,
18
  "metadata": {},
19
  "outputs": [],
20
  "source": [
@@ -27,7 +32,7 @@
27
  },
28
  {
29
  "cell_type": "code",
30
- "execution_count": 4,
31
  "metadata": {},
32
  "outputs": [
33
  {
@@ -77,7 +82,7 @@
77
  " <td>county</td>\n",
78
  " <td>ID</td>\n",
79
  " <td>all homes plus multifamily</td>\n",
80
- " <td>ID</td>\n",
81
  " <td>Boise City, ID</td>\n",
82
  " <td>16.0</td>\n",
83
  " <td>1.0</td>\n",
@@ -95,7 +100,7 @@
95
  " <td>county</td>\n",
96
  " <td>ID</td>\n",
97
  " <td>all homes plus multifamily</td>\n",
98
- " <td>ID</td>\n",
99
  " <td>Boise City, ID</td>\n",
100
  " <td>16.0</td>\n",
101
  " <td>1.0</td>\n",
@@ -113,7 +118,7 @@
113
  " <td>county</td>\n",
114
  " <td>ID</td>\n",
115
  " <td>all homes plus multifamily</td>\n",
116
- " <td>ID</td>\n",
117
  " <td>Boise City, ID</td>\n",
118
  " <td>16.0</td>\n",
119
  " <td>1.0</td>\n",
@@ -131,7 +136,7 @@
131
  " <td>county</td>\n",
132
  " <td>ID</td>\n",
133
  " <td>all homes plus multifamily</td>\n",
134
- " <td>ID</td>\n",
135
  " <td>Boise City, ID</td>\n",
136
  " <td>16.0</td>\n",
137
  " <td>1.0</td>\n",
@@ -149,7 +154,7 @@
149
  " <td>county</td>\n",
150
  " <td>ID</td>\n",
151
  " <td>all homes plus multifamily</td>\n",
152
- " <td>ID</td>\n",
153
  " <td>Boise City, ID</td>\n",
154
  " <td>16.0</td>\n",
155
  " <td>1.0</td>\n",
@@ -185,8 +190,8 @@
185
  " <td>city</td>\n",
186
  " <td>NJ</td>\n",
187
  " <td>all homes plus multifamily</td>\n",
188
- " <td>NaN</td>\n",
189
- " <td>NaN</td>\n",
190
  " <td>NaN</td>\n",
191
  " <td>NaN</td>\n",
192
  " <td>2023-08-31</td>\n",
@@ -203,8 +208,8 @@
203
  " <td>city</td>\n",
204
  " <td>NJ</td>\n",
205
  " <td>all homes plus multifamily</td>\n",
206
- " <td>NaN</td>\n",
207
- " <td>NaN</td>\n",
208
  " <td>NaN</td>\n",
209
  " <td>NaN</td>\n",
210
  " <td>2023-09-30</td>\n",
@@ -221,8 +226,8 @@
221
  " <td>city</td>\n",
222
  " <td>NJ</td>\n",
223
  " <td>all homes plus multifamily</td>\n",
224
- " <td>NaN</td>\n",
225
- " <td>NaN</td>\n",
226
  " <td>NaN</td>\n",
227
  " <td>NaN</td>\n",
228
  " <td>2023-10-31</td>\n",
@@ -239,8 +244,8 @@
239
  " <td>city</td>\n",
240
  " <td>NJ</td>\n",
241
  " <td>all homes plus multifamily</td>\n",
242
- " <td>NaN</td>\n",
243
- " <td>NaN</td>\n",
244
  " <td>NaN</td>\n",
245
  " <td>NaN</td>\n",
246
  " <td>2023-11-30</td>\n",
@@ -257,8 +262,8 @@
257
  " <td>city</td>\n",
258
  " <td>NJ</td>\n",
259
  " <td>all homes plus multifamily</td>\n",
260
- " <td>NaN</td>\n",
261
- " <td>NaN</td>\n",
262
  " <td>NaN</td>\n",
263
  " <td>NaN</td>\n",
264
  " <td>2023-12-31</td>\n",
@@ -286,18 +291,31 @@
286
  "1258738 857850 713 Cherry Hill city NJ \n",
287
  "1258739 857850 713 Cherry Hill city NJ \n",
288
  "\n",
289
- " Home Type State Metro StateCodeFIPS \\\n",
290
- "0 all homes plus multifamily ID Boise City, ID 16.0 \n",
291
- "1 all homes plus multifamily ID Boise City, ID 16.0 \n",
292
- "2 all homes plus multifamily ID Boise City, ID 16.0 \n",
293
- "3 all homes plus multifamily ID Boise City, ID 16.0 \n",
294
- "4 all homes plus multifamily ID Boise City, ID 16.0 \n",
295
- "... ... ... ... ... \n",
296
- "1258735 all homes plus multifamily NaN NaN NaN \n",
297
- "1258736 all homes plus multifamily NaN NaN NaN \n",
298
- "1258737 all homes plus multifamily NaN NaN NaN \n",
299
- "1258738 all homes plus multifamily NaN NaN NaN \n",
300
- "1258739 all homes plus multifamily NaN NaN NaN \n",
 
 
 
 
 
 
 
 
 
 
 
 
 
301
  "\n",
302
  " MunicipalCodeFIPS Date Rent (Smoothed) CountyName \\\n",
303
  "0 1.0 2015-01-31 927.493763 NaN \n",
@@ -328,16 +346,16 @@
328
  "[1258740 rows x 15 columns]"
329
  ]
330
  },
331
- "execution_count": 4,
332
  "metadata": {},
333
  "output_type": "execute_result"
334
  }
335
  ],
336
  "source": [
337
- "# base cols RegionID,SizeRank,RegionName,RegionType,StateName\n",
338
- "\n",
339
  "data_frames = []\n",
340
  "\n",
 
 
341
  "for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
342
  " if filename.endswith(\".csv\"):\n",
343
  " # print(\"processing \" + filename)\n",
@@ -402,19 +420,10 @@
402
  " elif \"_mfr_\" in filename:\n",
403
  " cur_df[\"Home Type\"] = \"multifamily\"\n",
404
  "\n",
405
- " # Identify columns to pivot\n",
406
- " columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
407
- "\n",
408
- " cur_df = get_df(\n",
409
- " cur_df,\n",
410
- " exclude_columns,\n",
411
- " columns_to_pivot,\n",
412
- " \"Rent\",\n",
413
- " filename,\n",
414
  " )\n",
415
  "\n",
416
- " data_frames.append(cur_df)\n",
417
- "\n",
418
  "\n",
419
  "combined_df = get_combined_df(\n",
420
  " data_frames,\n",
@@ -429,18 +438,14 @@
429
  " ],\n",
430
  ")\n",
431
  "\n",
432
- "\n",
433
- "# iterate over rows of combined df and coalesce column values across columns that start with \"Median Sale Price\"\n",
434
- "columns_to_coalesce = [\"Rent (Smoothed)\", \"Rent (Smoothed) (Seasonally Adjusted)\"]\n",
435
- "\n",
436
- "combined_df = coalesce_columns(combined_df, columns_to_coalesce)\n",
437
  "\n",
438
  "combined_df"
439
  ]
440
  },
441
  {
442
  "cell_type": "code",
443
- "execution_count": 5,
444
  "metadata": {},
445
  "outputs": [
446
  {
@@ -591,7 +596,7 @@
591
  " <td>city</td>\n",
592
  " <td>all homes plus multifamily</td>\n",
593
  " <td>Camden County</td>\n",
594
- " <td>NaN</td>\n",
595
  " <td>NaN</td>\n",
596
  " <td>NaN</td>\n",
597
  " <td>2023-08-31</td>\n",
@@ -608,7 +613,7 @@
608
  " <td>city</td>\n",
609
  " <td>all homes plus multifamily</td>\n",
610
  " <td>Camden County</td>\n",
611
- " <td>NaN</td>\n",
612
  " <td>NaN</td>\n",
613
  " <td>NaN</td>\n",
614
  " <td>2023-09-30</td>\n",
@@ -625,7 +630,7 @@
625
  " <td>city</td>\n",
626
  " <td>all homes plus multifamily</td>\n",
627
  " <td>Camden County</td>\n",
628
- " <td>NaN</td>\n",
629
  " <td>NaN</td>\n",
630
  " <td>NaN</td>\n",
631
  " <td>2023-10-31</td>\n",
@@ -642,7 +647,7 @@
642
  " <td>city</td>\n",
643
  " <td>all homes plus multifamily</td>\n",
644
  " <td>Camden County</td>\n",
645
- " <td>NaN</td>\n",
646
  " <td>NaN</td>\n",
647
  " <td>NaN</td>\n",
648
  " <td>2023-11-30</td>\n",
@@ -659,7 +664,7 @@
659
  " <td>city</td>\n",
660
  " <td>all homes plus multifamily</td>\n",
661
  " <td>Camden County</td>\n",
662
- " <td>NaN</td>\n",
663
  " <td>NaN</td>\n",
664
  " <td>NaN</td>\n",
665
  " <td>2023-12-31</td>\n",
@@ -687,31 +692,44 @@
687
  "1258738 857850 713 Cherry Hill city \n",
688
  "1258739 857850 713 Cherry Hill city \n",
689
  "\n",
690
- " Home Type State Metro \\\n",
691
- "0 all homes plus multifamily Ada County Boise City, ID \n",
692
- "1 all homes plus multifamily Ada County Boise City, ID \n",
693
- "2 all homes plus multifamily Ada County Boise City, ID \n",
694
- "3 all homes plus multifamily Ada County Boise City, ID \n",
695
- "4 all homes plus multifamily Ada County Boise City, ID \n",
696
- "... ... ... ... \n",
697
- "1258735 all homes plus multifamily Camden County NaN \n",
698
- "1258736 all homes plus multifamily Camden County NaN \n",
699
- "1258737 all homes plus multifamily Camden County NaN \n",
700
- "1258738 all homes plus multifamily Camden County NaN \n",
701
- "1258739 all homes plus multifamily Camden County NaN \n",
 
 
 
 
 
 
 
 
 
 
 
 
 
702
  "\n",
703
- " StateCodeFIPS MunicipalCodeFIPS Date Rent (Smoothed) \\\n",
704
- "0 16.0 1.0 2015-01-31 927.493763 \n",
705
- "1 16.0 1.0 2015-02-28 931.690623 \n",
706
- "2 16.0 1.0 2015-03-31 932.568601 \n",
707
- "3 16.0 1.0 2015-04-30 933.148134 \n",
708
- "4 16.0 1.0 2015-05-31 941.045724 \n",
709
- "... ... ... ... ... \n",
710
- "1258735 NaN NaN 2023-08-31 2291.604800 \n",
711
- "1258736 NaN NaN 2023-09-30 2296.188906 \n",
712
- "1258737 NaN NaN 2023-10-31 2292.270938 \n",
713
- "1258738 NaN NaN 2023-11-30 2253.417140 \n",
714
- "1258739 NaN NaN 2023-12-31 2280.830303 \n",
715
  "\n",
716
  " Rent (Smoothed) (Seasonally Adjusted) City County \n",
717
  "0 927.493763 NaN Ada County \n",
@@ -729,7 +747,7 @@
729
  "[1258740 rows x 14 columns]"
730
  ]
731
  },
732
- "execution_count": 5,
733
  "metadata": {},
734
  "output_type": "execute_result"
735
  }
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 2,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
9
  "import pandas as pd\n",
10
  "import os\n",
11
  "\n",
12
+ "from helpers import (\n",
13
+ " get_combined_df,\n",
14
+ " coalesce_columns,\n",
15
+ " save_final_df_as_jsonl,\n",
16
+ " handle_slug_column_mappings,\n",
17
+ ")"
18
  ]
19
  },
20
  {
21
  "cell_type": "code",
22
+ "execution_count": 3,
23
  "metadata": {},
24
  "outputs": [],
25
  "source": [
 
32
  },
33
  {
34
  "cell_type": "code",
35
+ "execution_count": 7,
36
  "metadata": {},
37
  "outputs": [
38
  {
 
82
  " <td>county</td>\n",
83
  " <td>ID</td>\n",
84
  " <td>all homes plus multifamily</td>\n",
85
+ " <td>16.0</td>\n",
86
  " <td>Boise City, ID</td>\n",
87
  " <td>16.0</td>\n",
88
  " <td>1.0</td>\n",
 
100
  " <td>county</td>\n",
101
  " <td>ID</td>\n",
102
  " <td>all homes plus multifamily</td>\n",
103
+ " <td>16.0</td>\n",
104
  " <td>Boise City, ID</td>\n",
105
  " <td>16.0</td>\n",
106
  " <td>1.0</td>\n",
 
118
  " <td>county</td>\n",
119
  " <td>ID</td>\n",
120
  " <td>all homes plus multifamily</td>\n",
121
+ " <td>16.0</td>\n",
122
  " <td>Boise City, ID</td>\n",
123
  " <td>16.0</td>\n",
124
  " <td>1.0</td>\n",
 
136
  " <td>county</td>\n",
137
  " <td>ID</td>\n",
138
  " <td>all homes plus multifamily</td>\n",
139
+ " <td>16.0</td>\n",
140
  " <td>Boise City, ID</td>\n",
141
  " <td>16.0</td>\n",
142
  " <td>1.0</td>\n",
 
154
  " <td>county</td>\n",
155
  " <td>ID</td>\n",
156
  " <td>all homes plus multifamily</td>\n",
157
+ " <td>16.0</td>\n",
158
  " <td>Boise City, ID</td>\n",
159
  " <td>16.0</td>\n",
160
  " <td>1.0</td>\n",
 
190
  " <td>city</td>\n",
191
  " <td>NJ</td>\n",
192
  " <td>all homes plus multifamily</td>\n",
193
+ " <td>NJ</td>\n",
194
+ " <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
195
  " <td>NaN</td>\n",
196
  " <td>NaN</td>\n",
197
  " <td>2023-08-31</td>\n",
 
208
  " <td>city</td>\n",
209
  " <td>NJ</td>\n",
210
  " <td>all homes plus multifamily</td>\n",
211
+ " <td>NJ</td>\n",
212
+ " <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
213
  " <td>NaN</td>\n",
214
  " <td>NaN</td>\n",
215
  " <td>2023-09-30</td>\n",
 
226
  " <td>city</td>\n",
227
  " <td>NJ</td>\n",
228
  " <td>all homes plus multifamily</td>\n",
229
+ " <td>NJ</td>\n",
230
+ " <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
231
  " <td>NaN</td>\n",
232
  " <td>NaN</td>\n",
233
  " <td>2023-10-31</td>\n",
 
244
  " <td>city</td>\n",
245
  " <td>NJ</td>\n",
246
  " <td>all homes plus multifamily</td>\n",
247
+ " <td>NJ</td>\n",
248
+ " <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
249
  " <td>NaN</td>\n",
250
  " <td>NaN</td>\n",
251
  " <td>2023-11-30</td>\n",
 
262
  " <td>city</td>\n",
263
  " <td>NJ</td>\n",
264
  " <td>all homes plus multifamily</td>\n",
265
+ " <td>NJ</td>\n",
266
+ " <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
267
  " <td>NaN</td>\n",
268
  " <td>NaN</td>\n",
269
  " <td>2023-12-31</td>\n",
 
291
  "1258738 857850 713 Cherry Hill city NJ \n",
292
  "1258739 857850 713 Cherry Hill city NJ \n",
293
  "\n",
294
+ " Home Type State \\\n",
295
+ "0 all homes plus multifamily 16.0 \n",
296
+ "1 all homes plus multifamily 16.0 \n",
297
+ "2 all homes plus multifamily 16.0 \n",
298
+ "3 all homes plus multifamily 16.0 \n",
299
+ "4 all homes plus multifamily 16.0 \n",
300
+ "... ... ... \n",
301
+ "1258735 all homes plus multifamily NJ \n",
302
+ "1258736 all homes plus multifamily NJ \n",
303
+ "1258737 all homes plus multifamily NJ \n",
304
+ "1258738 all homes plus multifamily NJ \n",
305
+ "1258739 all homes plus multifamily NJ \n",
306
+ "\n",
307
+ " Metro StateCodeFIPS \\\n",
308
+ "0 Boise City, ID 16.0 \n",
309
+ "1 Boise City, ID 16.0 \n",
310
+ "2 Boise City, ID 16.0 \n",
311
+ "3 Boise City, ID 16.0 \n",
312
+ "4 Boise City, ID 16.0 \n",
313
+ "... ... ... \n",
314
+ "1258735 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
315
+ "1258736 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
316
+ "1258737 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
317
+ "1258738 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
318
+ "1258739 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
319
  "\n",
320
  " MunicipalCodeFIPS Date Rent (Smoothed) CountyName \\\n",
321
  "0 1.0 2015-01-31 927.493763 NaN \n",
 
346
  "[1258740 rows x 15 columns]"
347
  ]
348
  },
349
+ "execution_count": 7,
350
  "metadata": {},
351
  "output_type": "execute_result"
352
  }
353
  ],
354
  "source": [
 
 
355
  "data_frames = []\n",
356
  "\n",
357
+ "slug_column_mappings = {\"\": \"Rent\"}\n",
358
+ "\n",
359
  "for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
360
  " if filename.endswith(\".csv\"):\n",
361
  " # print(\"processing \" + filename)\n",
 
420
  " elif \"_mfr_\" in filename:\n",
421
  " cur_df[\"Home Type\"] = \"multifamily\"\n",
422
  "\n",
423
+ " data_frames = handle_slug_column_mappings(\n",
424
+ " data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
 
 
 
 
 
 
 
425
  " )\n",
426
  "\n",
 
 
427
  "\n",
428
  "combined_df = get_combined_df(\n",
429
  " data_frames,\n",
 
438
  " ],\n",
439
  ")\n",
440
  "\n",
441
+ "combined_df = coalesce_columns(combined_df)\n",
 
 
 
 
442
  "\n",
443
  "combined_df"
444
  ]
445
  },
446
  {
447
  "cell_type": "code",
448
+ "execution_count": 8,
449
  "metadata": {},
450
  "outputs": [
451
  {
 
596
  " <td>city</td>\n",
597
  " <td>all homes plus multifamily</td>\n",
598
  " <td>Camden County</td>\n",
599
+ " <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
600
  " <td>NaN</td>\n",
601
  " <td>NaN</td>\n",
602
  " <td>2023-08-31</td>\n",
 
613
  " <td>city</td>\n",
614
  " <td>all homes plus multifamily</td>\n",
615
  " <td>Camden County</td>\n",
616
+ " <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
617
  " <td>NaN</td>\n",
618
  " <td>NaN</td>\n",
619
  " <td>2023-09-30</td>\n",
 
630
  " <td>city</td>\n",
631
  " <td>all homes plus multifamily</td>\n",
632
  " <td>Camden County</td>\n",
633
+ " <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
634
  " <td>NaN</td>\n",
635
  " <td>NaN</td>\n",
636
  " <td>2023-10-31</td>\n",
 
647
  " <td>city</td>\n",
648
  " <td>all homes plus multifamily</td>\n",
649
  " <td>Camden County</td>\n",
650
+ " <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
651
  " <td>NaN</td>\n",
652
  " <td>NaN</td>\n",
653
  " <td>2023-11-30</td>\n",
 
664
  " <td>city</td>\n",
665
  " <td>all homes plus multifamily</td>\n",
666
  " <td>Camden County</td>\n",
667
+ " <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
668
  " <td>NaN</td>\n",
669
  " <td>NaN</td>\n",
670
  " <td>2023-12-31</td>\n",
 
692
  "1258738 857850 713 Cherry Hill city \n",
693
  "1258739 857850 713 Cherry Hill city \n",
694
  "\n",
695
+ " Home Type State \\\n",
696
+ "0 all homes plus multifamily Ada County \n",
697
+ "1 all homes plus multifamily Ada County \n",
698
+ "2 all homes plus multifamily Ada County \n",
699
+ "3 all homes plus multifamily Ada County \n",
700
+ "4 all homes plus multifamily Ada County \n",
701
+ "... ... ... \n",
702
+ "1258735 all homes plus multifamily Camden County \n",
703
+ "1258736 all homes plus multifamily Camden County \n",
704
+ "1258737 all homes plus multifamily Camden County \n",
705
+ "1258738 all homes plus multifamily Camden County \n",
706
+ "1258739 all homes plus multifamily Camden County \n",
707
+ "\n",
708
+ " Metro StateCodeFIPS \\\n",
709
+ "0 Boise City, ID 16.0 \n",
710
+ "1 Boise City, ID 16.0 \n",
711
+ "2 Boise City, ID 16.0 \n",
712
+ "3 Boise City, ID 16.0 \n",
713
+ "4 Boise City, ID 16.0 \n",
714
+ "... ... ... \n",
715
+ "1258735 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
716
+ "1258736 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
717
+ "1258737 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
718
+ "1258738 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
719
+ "1258739 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
720
  "\n",
721
+ " MunicipalCodeFIPS Date Rent (Smoothed) \\\n",
722
+ "0 1.0 2015-01-31 927.493763 \n",
723
+ "1 1.0 2015-02-28 931.690623 \n",
724
+ "2 1.0 2015-03-31 932.568601 \n",
725
+ "3 1.0 2015-04-30 933.148134 \n",
726
+ "4 1.0 2015-05-31 941.045724 \n",
727
+ "... ... ... ... \n",
728
+ "1258735 NaN 2023-08-31 2291.604800 \n",
729
+ "1258736 NaN 2023-09-30 2296.188906 \n",
730
+ "1258737 NaN 2023-10-31 2292.270938 \n",
731
+ "1258738 NaN 2023-11-30 2253.417140 \n",
732
+ "1258739 NaN 2023-12-31 2280.830303 \n",
733
  "\n",
734
  " Rent (Smoothed) (Seasonally Adjusted) City County \n",
735
  "0 927.493763 NaN Ada County \n",
 
747
  "[1258740 rows x 14 columns]"
748
  ]
749
  },
750
+ "execution_count": 8,
751
  "metadata": {},
752
  "output_type": "execute_result"
753
  }
processors/sales.ipynb CHANGED
@@ -9,7 +9,12 @@
9
  "import pandas as pd\n",
10
  "import os\n",
11
  "\n",
12
- "from helpers import get_combined_df, coalesce_columns, get_df, save_final_df_as_jsonl"
 
 
 
 
 
13
  ]
14
  },
15
  {
@@ -468,8 +473,6 @@
468
  }
469
  ],
470
  "source": [
471
- "# base cols RegionID,SizeRank,RegionName,RegionType,StateName\n",
472
- "\n",
473
  "exclude_columns = [\n",
474
  " \"RegionID\",\n",
475
  " \"SizeRank\",\n",
@@ -493,33 +496,20 @@
493
  "for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
494
  " if filename.endswith(\".csv\"):\n",
495
  " print(\"processing \" + filename)\n",
496
- " cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
497
- "\n",
498
  " # ignore monthly data for now since it is redundant\n",
499
- " if \"monthly\" in filename:\n",
500
  " continue\n",
501
  "\n",
 
 
502
  " if \"_sfrcondo_\" in filename:\n",
503
  " cur_df[\"Home Type\"] = \"all homes\"\n",
504
  " elif \"_sfr_\" in filename:\n",
505
  " cur_df[\"Home Type\"] = \"SFR\"\n",
506
  "\n",
507
- " # Identify columns to pivot\n",
508
- " columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
509
- "\n",
510
- " # iterate over slug column mappings and get df\n",
511
- " for slug, col_name in slug_column_mappings.items():\n",
512
- " if slug in filename:\n",
513
- " cur_df = get_df(\n",
514
- " cur_df,\n",
515
- " exclude_columns,\n",
516
- " columns_to_pivot,\n",
517
- " col_name,\n",
518
- " filename,\n",
519
- " )\n",
520
- "\n",
521
- " data_frames.append(cur_df)\n",
522
- " break\n",
523
  "\n",
524
  "\n",
525
  "combined_df = get_combined_df(\n",
@@ -535,23 +525,7 @@
535
  " ],\n",
536
  ")\n",
537
  "\n",
538
- "# iterate over rows of combined df and coalesce column values across columns that start with \"Median Sale Price\"\n",
539
- "columns_to_coalesce = [\n",
540
- " \"Mean Sale to List Ratio (Smoothed)\"\n",
541
- " \"Median Sale to List Ratio\"\n",
542
- " \"Median Sale Price\"\n",
543
- " \"% Sold Below List (Smoothed)\",\n",
544
- " \"Median Sale Price (Smoothed) (Seasonally Adjusted)\",\n",
545
- " \"% Sold Below List\",\n",
546
- " \"Median Sale Price (Smoothed)\",\n",
547
- " \"Median Sale to List Ratio (Smoothed)\",\n",
548
- " \"% Sold Above List\",\n",
549
- " \"Nowcast\",\n",
550
- " \"Mean Sale to List Ratio\",\n",
551
- " \"% Sold Above List (Smoothed)\",\n",
552
- "]\n",
553
- "\n",
554
- "combined_df = coalesce_columns(combined_df, columns_to_coalesce)\n",
555
  "\n",
556
  "combined_df"
557
  ]
 
9
  "import pandas as pd\n",
10
  "import os\n",
11
  "\n",
12
+ "from helpers import (\n",
13
+ " get_combined_df,\n",
14
+ " coalesce_columns,\n",
15
+ " save_final_df_as_jsonl,\n",
16
+ " handle_slug_column_mappings,\n",
17
+ ")"
18
  ]
19
  },
20
  {
 
473
  }
474
  ],
475
  "source": [
 
 
476
  "exclude_columns = [\n",
477
  " \"RegionID\",\n",
478
  " \"SizeRank\",\n",
 
496
  "for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
497
  " if filename.endswith(\".csv\"):\n",
498
  " print(\"processing \" + filename)\n",
 
 
499
  " # ignore monthly data for now since it is redundant\n",
500
+ " if \"month\" in filename:\n",
501
  " continue\n",
502
  "\n",
503
+ " cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
504
+ "\n",
505
  " if \"_sfrcondo_\" in filename:\n",
506
  " cur_df[\"Home Type\"] = \"all homes\"\n",
507
  " elif \"_sfr_\" in filename:\n",
508
  " cur_df[\"Home Type\"] = \"SFR\"\n",
509
  "\n",
510
+ " data_frames = handle_slug_column_mappings(\n",
511
+ " data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
512
+ " )\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
513
  "\n",
514
  "\n",
515
  "combined_df = get_combined_df(\n",
 
525
  " ],\n",
526
  ")\n",
527
  "\n",
528
+ "combined_df = coalesce_columns(combined_df)\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529
  "\n",
530
  "combined_df"
531
  ]