fix: update region types, dates, and home types to match each other
Browse files- README.md +2 -2
- checker.ipynb +106 -130
- processors/days_on_market.ipynb +293 -2
- processors/for_sale_listings.ipynb +12 -12
- processors/home_values.ipynb +150 -500
- processors/home_values_forecasts.ipynb +360 -43
- processors/new_construction.ipynb +12 -12
- processors/rentals.ipynb +50 -37
- processors/sales.ipynb +9 -9
- test-sales.parquet +3 -0
- zillow.py +32 -24
README.md
CHANGED
@@ -39,7 +39,7 @@ dataset_info:
|
|
39 |
class_label:
|
40 |
names:
|
41 |
'0': SFR
|
42 |
-
'1': all homes
|
43 |
- name: Date
|
44 |
dtype: string
|
45 |
id: Date
|
@@ -257,7 +257,7 @@ dataset_info:
|
|
257 |
names:
|
258 |
'0': SFR
|
259 |
'1': all homes
|
260 |
-
'2': condo/co-op
|
261 |
- name: Date
|
262 |
dtype: string
|
263 |
id: Date
|
|
|
39 |
class_label:
|
40 |
names:
|
41 |
'0': SFR
|
42 |
+
'1': all homes
|
43 |
- name: Date
|
44 |
dtype: string
|
45 |
id: Date
|
|
|
257 |
names:
|
258 |
'0': SFR
|
259 |
'1': all homes
|
260 |
+
'2': condo/co-op
|
261 |
- name: Date
|
262 |
dtype: string
|
263 |
id: Date
|
checker.ipynb
CHANGED
@@ -12,7 +12,7 @@
|
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
-
"execution_count":
|
16 |
"metadata": {},
|
17 |
"outputs": [
|
18 |
{
|
@@ -388,7 +388,7 @@
|
|
388 |
"[255024 rows x 18 columns]"
|
389 |
]
|
390 |
},
|
391 |
-
"execution_count":
|
392 |
"metadata": {},
|
393 |
"output_type": "execute_result"
|
394 |
}
|
@@ -463,95 +463,18 @@
|
|
463 |
},
|
464 |
{
|
465 |
"cell_type": "code",
|
466 |
-
"execution_count":
|
467 |
"metadata": {},
|
468 |
-
"outputs": [
|
469 |
-
{
|
470 |
-
"name": "stderr",
|
471 |
-
"output_type": "stream",
|
472 |
-
"text": [
|
473 |
-
"/Users/misikoff/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
474 |
-
" from .autonotebook import tqdm as notebook_tqdm\n"
|
475 |
-
]
|
476 |
-
}
|
477 |
-
],
|
478 |
"source": [
|
479 |
"from datasets import load_dataset"
|
480 |
]
|
481 |
},
|
482 |
{
|
483 |
"cell_type": "code",
|
484 |
-
"execution_count":
|
485 |
"metadata": {},
|
486 |
"outputs": [
|
487 |
-
{
|
488 |
-
"name": "stdout",
|
489 |
-
"output_type": "stream",
|
490 |
-
"text": [
|
491 |
-
"home_values_forecasts\n"
|
492 |
-
]
|
493 |
-
},
|
494 |
-
{
|
495 |
-
"name": "stderr",
|
496 |
-
"output_type": "stream",
|
497 |
-
"text": [
|
498 |
-
"Downloading builder script: 100%|██████████| 26.8k/26.8k [00:00<00:00, 15.9MB/s]\n",
|
499 |
-
"Downloading readme: 100%|██████████| 13.2k/13.2k [00:00<00:00, 19.4MB/s]\n",
|
500 |
-
"Downloading data: 100%|██████████| 14.1M/14.1M [00:01<00:00, 11.0MB/s]\n",
|
501 |
-
"Generating train split: 31854 examples [00:01, 27592.53 examples/s]\n"
|
502 |
-
]
|
503 |
-
},
|
504 |
-
{
|
505 |
-
"name": "stdout",
|
506 |
-
"output_type": "stream",
|
507 |
-
"text": [
|
508 |
-
"new_construction\n"
|
509 |
-
]
|
510 |
-
},
|
511 |
-
{
|
512 |
-
"name": "stderr",
|
513 |
-
"output_type": "stream",
|
514 |
-
"text": [
|
515 |
-
"Downloading builder script: 100%|██████████| 26.8k/26.8k [00:00<00:00, 7.13MB/s]\n",
|
516 |
-
"Downloading readme: 100%|██████████| 13.2k/13.2k [00:00<00:00, 10.4MB/s]\n",
|
517 |
-
"Downloading data: 100%|██████████| 10.9M/10.9M [00:01<00:00, 5.63MB/s]\n",
|
518 |
-
"Generating train split: 49487 examples [00:01, 42744.19 examples/s]\n"
|
519 |
-
]
|
520 |
-
},
|
521 |
-
{
|
522 |
-
"name": "stdout",
|
523 |
-
"output_type": "stream",
|
524 |
-
"text": [
|
525 |
-
"for_sale_listings\n"
|
526 |
-
]
|
527 |
-
},
|
528 |
-
{
|
529 |
-
"name": "stderr",
|
530 |
-
"output_type": "stream",
|
531 |
-
"text": [
|
532 |
-
"Downloading builder script: 100%|██████████| 26.8k/26.8k [00:00<00:00, 5.22MB/s]\n",
|
533 |
-
"Downloading readme: 100%|██████████| 13.2k/13.2k [00:00<00:00, 4.72MB/s]\n",
|
534 |
-
"Downloading data: 100%|██████████| 180M/180M [00:06<00:00, 28.9MB/s] \n",
|
535 |
-
"Generating train split: 578653 examples [00:16, 34651.20 examples/s]\n"
|
536 |
-
]
|
537 |
-
},
|
538 |
-
{
|
539 |
-
"name": "stdout",
|
540 |
-
"output_type": "stream",
|
541 |
-
"text": [
|
542 |
-
"rentals\n"
|
543 |
-
]
|
544 |
-
},
|
545 |
-
{
|
546 |
-
"name": "stderr",
|
547 |
-
"output_type": "stream",
|
548 |
-
"text": [
|
549 |
-
"Downloading builder script: 100%|██████████| 26.8k/26.8k [00:00<00:00, 6.18MB/s]\n",
|
550 |
-
"Downloading readme: 100%|██████████| 13.2k/13.2k [00:00<00:00, 13.3MB/s]\n",
|
551 |
-
"Downloading data: 100%|██████████| 446M/446M [00:11<00:00, 38.2MB/s] \n",
|
552 |
-
"Generating train split: 1258740 examples [00:28, 44189.96 examples/s]\n"
|
553 |
-
]
|
554 |
-
},
|
555 |
{
|
556 |
"name": "stdout",
|
557 |
"output_type": "stream",
|
@@ -563,44 +486,10 @@
|
|
563 |
"name": "stderr",
|
564 |
"output_type": "stream",
|
565 |
"text": [
|
566 |
-
"Downloading builder script: 100%|██████████| 26.8k/26.8k [00:00<00:00,
|
567 |
-
"Downloading readme: 100%|██████████|
|
568 |
-
"Downloading data: 100%|██████████| 139M/139M [00:04<00:00,
|
569 |
-
"Generating train split: 255024
|
570 |
-
]
|
571 |
-
},
|
572 |
-
{
|
573 |
-
"name": "stdout",
|
574 |
-
"output_type": "stream",
|
575 |
-
"text": [
|
576 |
-
"home_values\n"
|
577 |
-
]
|
578 |
-
},
|
579 |
-
{
|
580 |
-
"name": "stderr",
|
581 |
-
"output_type": "stream",
|
582 |
-
"text": [
|
583 |
-
"Downloading builder script: 100%|██████████| 26.8k/26.8k [00:00<00:00, 2.18MB/s]\n",
|
584 |
-
"Downloading readme: 100%|██████████| 13.2k/13.2k [00:00<00:00, 8.86MB/s]\n",
|
585 |
-
"Downloading data: 100%|██████████| 42.1M/42.1M [00:01<00:00, 32.4MB/s]\n",
|
586 |
-
"Generating train split: 117912 examples [00:03, 37382.19 examples/s]\n"
|
587 |
-
]
|
588 |
-
},
|
589 |
-
{
|
590 |
-
"name": "stdout",
|
591 |
-
"output_type": "stream",
|
592 |
-
"text": [
|
593 |
-
"days_on_market\n"
|
594 |
-
]
|
595 |
-
},
|
596 |
-
{
|
597 |
-
"name": "stderr",
|
598 |
-
"output_type": "stream",
|
599 |
-
"text": [
|
600 |
-
"Downloading builder script: 100%|██████████| 26.8k/26.8k [00:00<00:00, 12.7MB/s]\n",
|
601 |
-
"Downloading readme: 100%|████████���█| 13.2k/13.2k [00:00<00:00, 8.86MB/s]\n",
|
602 |
-
"Downloading data: 100%|██████████| 233M/233M [00:06<00:00, 34.9MB/s] \n",
|
603 |
-
"Generating train split: 586714 examples [00:17, 34104.98 examples/s]\n"
|
604 |
]
|
605 |
}
|
606 |
],
|
@@ -608,13 +497,13 @@
|
|
608 |
"dataset_dict = {}\n",
|
609 |
"\n",
|
610 |
"configs = [\n",
|
611 |
-
" \"home_values_forecasts\",\n",
|
612 |
-
" \"new_construction\",\n",
|
613 |
-
" \"for_sale_listings\",\n",
|
614 |
-
" \"rentals\",\n",
|
615 |
" \"sales\",\n",
|
616 |
-
" \"home_values\",\n",
|
617 |
-
" \"days_on_market\",\n",
|
618 |
"]\n",
|
619 |
"for config in configs:\n",
|
620 |
" print(config)\n",
|
@@ -623,19 +512,106 @@
|
|
623 |
" config,\n",
|
624 |
" trust_remote_code=True,\n",
|
625 |
" download_mode=\"force_redownload\",\n",
|
626 |
-
" cache_dir=\"
|
627 |
" )"
|
628 |
]
|
629 |
},
|
630 |
{
|
631 |
"cell_type": "code",
|
632 |
-
"execution_count":
|
633 |
"metadata": {},
|
634 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
635 |
"source": [
|
|
|
|
|
|
|
636 |
"df = pd.read_feather(\n",
|
637 |
" \"~/desktop/cache/misikoff___zillow/sales/1.1.0/c70d9545e9cef7612b795e19b5393a565f297e17856ab372df6f4026ecc498ae/zillow-train.arrow\"\n",
|
638 |
-
")"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
639 |
]
|
640 |
}
|
641 |
],
|
|
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
+
"execution_count": 2,
|
16 |
"metadata": {},
|
17 |
"outputs": [
|
18 |
{
|
|
|
388 |
"[255024 rows x 18 columns]"
|
389 |
]
|
390 |
},
|
391 |
+
"execution_count": 2,
|
392 |
"metadata": {},
|
393 |
"output_type": "execute_result"
|
394 |
}
|
|
|
463 |
},
|
464 |
{
|
465 |
"cell_type": "code",
|
466 |
+
"execution_count": 8,
|
467 |
"metadata": {},
|
468 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
469 |
"source": [
|
470 |
"from datasets import load_dataset"
|
471 |
]
|
472 |
},
|
473 |
{
|
474 |
"cell_type": "code",
|
475 |
+
"execution_count": 19,
|
476 |
"metadata": {},
|
477 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
478 |
{
|
479 |
"name": "stdout",
|
480 |
"output_type": "stream",
|
|
|
486 |
"name": "stderr",
|
487 |
"output_type": "stream",
|
488 |
"text": [
|
489 |
+
"Downloading builder script: 100%|██████████| 26.8k/26.8k [00:00<00:00, 14.2MB/s]\n",
|
490 |
+
"Downloading readme: 100%|██████████| 21.7k/21.7k [00:00<00:00, 3.80MB/s]\n",
|
491 |
+
"Downloading data: 100%|██████████| 139M/139M [00:04<00:00, 32.2MB/s] \n",
|
492 |
+
"Generating train split: 100%|██████████| 255024/255024 [00:10<00:00, 24068.33 examples/s]\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
493 |
]
|
494 |
}
|
495 |
],
|
|
|
497 |
"dataset_dict = {}\n",
|
498 |
"\n",
|
499 |
"configs = [\n",
|
500 |
+
" # \"home_values_forecasts\",\n",
|
501 |
+
" # \"new_construction\",\n",
|
502 |
+
" # \"for_sale_listings\",\n",
|
503 |
+
" # \"rentals\",\n",
|
504 |
" \"sales\",\n",
|
505 |
+
" # \"home_values\",\n",
|
506 |
+
" # \"days_on_market\",\n",
|
507 |
"]\n",
|
508 |
"for config in configs:\n",
|
509 |
" print(config)\n",
|
|
|
512 |
" config,\n",
|
513 |
" trust_remote_code=True,\n",
|
514 |
" download_mode=\"force_redownload\",\n",
|
515 |
+
" cache_dir=\"./cache\",\n",
|
516 |
" )"
|
517 |
]
|
518 |
},
|
519 |
{
|
520 |
"cell_type": "code",
|
521 |
+
"execution_count": 40,
|
522 |
"metadata": {},
|
523 |
+
"outputs": [
|
524 |
+
{
|
525 |
+
"ename": "ArrowInvalid",
|
526 |
+
"evalue": "Not a Feather V1 or Arrow IPC file",
|
527 |
+
"output_type": "error",
|
528 |
+
"traceback": [
|
529 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
530 |
+
"\u001b[0;31mArrowInvalid\u001b[0m Traceback (most recent call last)",
|
531 |
+
"Cell \u001b[0;32mIn[40], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpyarrow\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mpa\u001b[39;00m\n\u001b[0;32m----> 4\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_feather\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 5\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m~/desktop/cache/misikoff___zillow/sales/1.1.0/c70d9545e9cef7612b795e19b5393a565f297e17856ab372df6f4026ecc498ae/zillow-train.arrow\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 6\u001b[0m \u001b[43m)\u001b[49m\n\u001b[1;32m 7\u001b[0m df\n",
|
532 |
+
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/pandas/io/feather_format.py:124\u001b[0m, in \u001b[0;36mread_feather\u001b[0;34m(path, columns, use_threads, storage_options, dtype_backend)\u001b[0m\n\u001b[1;32m 120\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m get_handle(\n\u001b[1;32m 121\u001b[0m path, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrb\u001b[39m\u001b[38;5;124m\"\u001b[39m, storage_options\u001b[38;5;241m=\u001b[39mstorage_options, is_text\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m 122\u001b[0m ) \u001b[38;5;28;01mas\u001b[39;00m handles:\n\u001b[1;32m 123\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m dtype_backend \u001b[38;5;129;01mis\u001b[39;00m lib\u001b[38;5;241m.\u001b[39mno_default \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m using_pyarrow_string_dtype():\n\u001b[0;32m--> 124\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfeather\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_feather\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 125\u001b[0m \u001b[43m \u001b[49m\u001b[43mhandles\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43muse_threads\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mbool\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43muse_threads\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 126\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 128\u001b[0m pa_table \u001b[38;5;241m=\u001b[39m feather\u001b[38;5;241m.\u001b[39mread_table(\n\u001b[1;32m 129\u001b[0m handles\u001b[38;5;241m.\u001b[39mhandle, columns\u001b[38;5;241m=\u001b[39mcolumns, use_threads\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mbool\u001b[39m(use_threads)\n\u001b[1;32m 130\u001b[0m )\n\u001b[1;32m 132\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m dtype_backend \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnumpy_nullable\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n",
|
533 |
+
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/pyarrow/feather.py:226\u001b[0m, in \u001b[0;36mread_feather\u001b[0;34m(source, columns, use_threads, memory_map, **kwargs)\u001b[0m\n\u001b[1;32m 199\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mread_feather\u001b[39m(source, columns\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, use_threads\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 200\u001b[0m memory_map\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 201\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 202\u001b[0m \u001b[38;5;124;03m Read a pandas.DataFrame from Feather format. To read as pyarrow.Table use\u001b[39;00m\n\u001b[1;32m 203\u001b[0m \u001b[38;5;124;03m feather.read_table.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 224\u001b[0m \u001b[38;5;124;03m The contents of the Feather file as a pandas.DataFrame\u001b[39;00m\n\u001b[1;32m 225\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 226\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m (\u001b[43mread_table\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 227\u001b[0m \u001b[43m \u001b[49m\u001b[43msource\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmemory_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmemory_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 228\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_threads\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_threads\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mto_pandas(use_threads\u001b[38;5;241m=\u001b[39muse_threads, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs))\n",
|
534 |
+
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/pyarrow/feather.py:252\u001b[0m, in \u001b[0;36mread_table\u001b[0;34m(source, columns, memory_map, use_threads)\u001b[0m\n\u001b[1;32m 231\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mread_table\u001b[39m(source, columns\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, memory_map\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, use_threads\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m):\n\u001b[1;32m 232\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 233\u001b[0m \u001b[38;5;124;03m Read a pyarrow.Table from Feather format\u001b[39;00m\n\u001b[1;32m 234\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 250\u001b[0m \u001b[38;5;124;03m The contents of the Feather file as a pyarrow.Table\u001b[39;00m\n\u001b[1;32m 251\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 252\u001b[0m reader \u001b[38;5;241m=\u001b[39m \u001b[43m_feather\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mFeatherReader\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 253\u001b[0m \u001b[43m \u001b[49m\u001b[43msource\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43muse_memory_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmemory_map\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43muse_threads\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_threads\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 255\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m columns \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 256\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m reader\u001b[38;5;241m.\u001b[39mread()\n",
|
535 |
+
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/pyarrow/_feather.pyx:79\u001b[0m, in \u001b[0;36mpyarrow._feather.FeatherReader.__cinit__\u001b[0;34m()\u001b[0m\n",
|
536 |
+
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/pyarrow/error.pxi:154\u001b[0m, in \u001b[0;36mpyarrow.lib.pyarrow_internal_check_status\u001b[0;34m()\u001b[0m\n",
|
537 |
+
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/pyarrow/error.pxi:91\u001b[0m, in \u001b[0;36mpyarrow.lib.check_status\u001b[0;34m()\u001b[0m\n",
|
538 |
+
"\u001b[0;31mArrowInvalid\u001b[0m: Not a Feather V1 or Arrow IPC file"
|
539 |
+
]
|
540 |
+
}
|
541 |
+
],
|
542 |
"source": [
|
543 |
+
"import pyarrow as pa\n",
|
544 |
+
"\n",
|
545 |
+
"\n",
|
546 |
"df = pd.read_feather(\n",
|
547 |
" \"~/desktop/cache/misikoff___zillow/sales/1.1.0/c70d9545e9cef7612b795e19b5393a565f297e17856ab372df6f4026ecc498ae/zillow-train.arrow\"\n",
|
548 |
+
")\n",
|
549 |
+
"df"
|
550 |
+
]
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"cell_type": "code",
|
554 |
+
"execution_count": 20,
|
555 |
+
"metadata": {},
|
556 |
+
"outputs": [
|
557 |
+
{
|
558 |
+
"name": "stderr",
|
559 |
+
"output_type": "stream",
|
560 |
+
"text": [
|
561 |
+
"Creating parquet from Arrow format: 100%|██████████| 256/256 [00:00<00:00, 738.39ba/s]\n"
|
562 |
+
]
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"data": {
|
566 |
+
"text/plain": [
|
567 |
+
"27088039"
|
568 |
+
]
|
569 |
+
},
|
570 |
+
"execution_count": 20,
|
571 |
+
"metadata": {},
|
572 |
+
"output_type": "execute_result"
|
573 |
+
}
|
574 |
+
],
|
575 |
+
"source": [
|
576 |
+
"dataset_dict[config][\"train\"].to_parquet(\"test-sales.parquet\")"
|
577 |
+
]
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"cell_type": "code",
|
581 |
+
"execution_count": 32,
|
582 |
+
"metadata": {},
|
583 |
+
"outputs": [
|
584 |
+
{
|
585 |
+
"data": {
|
586 |
+
"text/plain": [
|
587 |
+
"{'Region ID': '102001',\n",
|
588 |
+
" 'Size Rank': 0,\n",
|
589 |
+
" 'Region': 'United States',\n",
|
590 |
+
" 'Region Type': 0,\n",
|
591 |
+
" 'State': None,\n",
|
592 |
+
" 'Home Type': 0,\n",
|
593 |
+
" 'Date': datetime.datetime(2008, 2, 2, 0, 0),\n",
|
594 |
+
" 'Mean Sale to List Ratio (Smoothed)': None,\n",
|
595 |
+
" 'Median Sale to List Ratio': None,\n",
|
596 |
+
" 'Median Sale Price': 172000.0,\n",
|
597 |
+
" 'Median Sale Price (Smoothed) (Seasonally Adjusted)': None,\n",
|
598 |
+
" 'Median Sale Price (Smoothed)': None,\n",
|
599 |
+
" 'Median Sale to List Ratio (Smoothed)': None,\n",
|
600 |
+
" '% Sold Below List': None,\n",
|
601 |
+
" '% Sold Below List (Smoothed)': None,\n",
|
602 |
+
" '% Sold Above List': None,\n",
|
603 |
+
" '% Sold Above List (Smoothed)': None,\n",
|
604 |
+
" 'Mean Sale to List Ratio': None}"
|
605 |
+
]
|
606 |
+
},
|
607 |
+
"execution_count": 32,
|
608 |
+
"metadata": {},
|
609 |
+
"output_type": "execute_result"
|
610 |
+
}
|
611 |
+
],
|
612 |
+
"source": [
|
613 |
+
"gen = iter(dataset_dict[config][\"train\"])\n",
|
614 |
+
"next(gen)"
|
615 |
]
|
616 |
}
|
617 |
],
|
processors/days_on_market.ipynb
CHANGED
@@ -91,6 +91,297 @@
|
|
91 |
"processing Metro_mean_listings_price_cut_amt_uc_sfr_month.csv\n",
|
92 |
"processing Metro_mean_doz_pending_uc_sfrcondo_month.csv\n"
|
93 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
}
|
95 |
],
|
96 |
"source": [
|
@@ -148,7 +439,7 @@
|
|
148 |
},
|
149 |
{
|
150 |
"cell_type": "code",
|
151 |
-
"execution_count":
|
152 |
"metadata": {},
|
153 |
"outputs": [
|
154 |
{
|
@@ -438,7 +729,7 @@
|
|
438 |
"[586714 rows x 13 columns]"
|
439 |
]
|
440 |
},
|
441 |
-
"execution_count":
|
442 |
"metadata": {},
|
443 |
"output_type": "execute_result"
|
444 |
}
|
|
|
91 |
"processing Metro_mean_listings_price_cut_amt_uc_sfr_month.csv\n",
|
92 |
"processing Metro_mean_doz_pending_uc_sfrcondo_month.csv\n"
|
93 |
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"data": {
|
97 |
+
"text/html": [
|
98 |
+
"<div>\n",
|
99 |
+
"<style scoped>\n",
|
100 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
101 |
+
" vertical-align: middle;\n",
|
102 |
+
" }\n",
|
103 |
+
"\n",
|
104 |
+
" .dataframe tbody tr th {\n",
|
105 |
+
" vertical-align: top;\n",
|
106 |
+
" }\n",
|
107 |
+
"\n",
|
108 |
+
" .dataframe thead th {\n",
|
109 |
+
" text-align: right;\n",
|
110 |
+
" }\n",
|
111 |
+
"</style>\n",
|
112 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
113 |
+
" <thead>\n",
|
114 |
+
" <tr style=\"text-align: right;\">\n",
|
115 |
+
" <th></th>\n",
|
116 |
+
" <th>RegionID</th>\n",
|
117 |
+
" <th>SizeRank</th>\n",
|
118 |
+
" <th>RegionName</th>\n",
|
119 |
+
" <th>RegionType</th>\n",
|
120 |
+
" <th>StateName</th>\n",
|
121 |
+
" <th>Home Type</th>\n",
|
122 |
+
" <th>Date</th>\n",
|
123 |
+
" <th>Percent Listings Price Cut</th>\n",
|
124 |
+
" <th>Mean Listings Price Cut Amount</th>\n",
|
125 |
+
" <th>Percent Listings Price Cut (Smoothed)</th>\n",
|
126 |
+
" <th>Mean Listings Price Cut Amount (Smoothed)</th>\n",
|
127 |
+
" <th>Median Days on Pending (Smoothed)</th>\n",
|
128 |
+
" <th>Median Days on Pending</th>\n",
|
129 |
+
" </tr>\n",
|
130 |
+
" </thead>\n",
|
131 |
+
" <tbody>\n",
|
132 |
+
" <tr>\n",
|
133 |
+
" <th>0</th>\n",
|
134 |
+
" <td>102001</td>\n",
|
135 |
+
" <td>0</td>\n",
|
136 |
+
" <td>United States</td>\n",
|
137 |
+
" <td>country</td>\n",
|
138 |
+
" <td>NaN</td>\n",
|
139 |
+
" <td>SFR</td>\n",
|
140 |
+
" <td>2018-01-06</td>\n",
|
141 |
+
" <td>NaN</td>\n",
|
142 |
+
" <td>13508.368375</td>\n",
|
143 |
+
" <td>NaN</td>\n",
|
144 |
+
" <td>NaN</td>\n",
|
145 |
+
" <td>NaN</td>\n",
|
146 |
+
" <td>NaN</td>\n",
|
147 |
+
" </tr>\n",
|
148 |
+
" <tr>\n",
|
149 |
+
" <th>1</th>\n",
|
150 |
+
" <td>102001</td>\n",
|
151 |
+
" <td>0</td>\n",
|
152 |
+
" <td>United States</td>\n",
|
153 |
+
" <td>country</td>\n",
|
154 |
+
" <td>NaN</td>\n",
|
155 |
+
" <td>SFR</td>\n",
|
156 |
+
" <td>2018-01-13</td>\n",
|
157 |
+
" <td>0.049042</td>\n",
|
158 |
+
" <td>14114.788383</td>\n",
|
159 |
+
" <td>NaN</td>\n",
|
160 |
+
" <td>NaN</td>\n",
|
161 |
+
" <td>NaN</td>\n",
|
162 |
+
" <td>NaN</td>\n",
|
163 |
+
" </tr>\n",
|
164 |
+
" <tr>\n",
|
165 |
+
" <th>2</th>\n",
|
166 |
+
" <td>102001</td>\n",
|
167 |
+
" <td>0</td>\n",
|
168 |
+
" <td>United States</td>\n",
|
169 |
+
" <td>country</td>\n",
|
170 |
+
" <td>NaN</td>\n",
|
171 |
+
" <td>SFR</td>\n",
|
172 |
+
" <td>2018-01-20</td>\n",
|
173 |
+
" <td>0.044740</td>\n",
|
174 |
+
" <td>14326.128956</td>\n",
|
175 |
+
" <td>NaN</td>\n",
|
176 |
+
" <td>NaN</td>\n",
|
177 |
+
" <td>NaN</td>\n",
|
178 |
+
" <td>NaN</td>\n",
|
179 |
+
" </tr>\n",
|
180 |
+
" <tr>\n",
|
181 |
+
" <th>3</th>\n",
|
182 |
+
" <td>102001</td>\n",
|
183 |
+
" <td>0</td>\n",
|
184 |
+
" <td>United States</td>\n",
|
185 |
+
" <td>country</td>\n",
|
186 |
+
" <td>NaN</td>\n",
|
187 |
+
" <td>SFR</td>\n",
|
188 |
+
" <td>2018-01-27</td>\n",
|
189 |
+
" <td>0.047930</td>\n",
|
190 |
+
" <td>13998.585612</td>\n",
|
191 |
+
" <td>NaN</td>\n",
|
192 |
+
" <td>13998.585612</td>\n",
|
193 |
+
" <td>NaN</td>\n",
|
194 |
+
" <td>NaN</td>\n",
|
195 |
+
" </tr>\n",
|
196 |
+
" <tr>\n",
|
197 |
+
" <th>4</th>\n",
|
198 |
+
" <td>102001</td>\n",
|
199 |
+
" <td>0</td>\n",
|
200 |
+
" <td>United States</td>\n",
|
201 |
+
" <td>country</td>\n",
|
202 |
+
" <td>NaN</td>\n",
|
203 |
+
" <td>SFR</td>\n",
|
204 |
+
" <td>2018-02-03</td>\n",
|
205 |
+
" <td>0.047622</td>\n",
|
206 |
+
" <td>14120.035549</td>\n",
|
207 |
+
" <td>0.047622</td>\n",
|
208 |
+
" <td>14120.035549</td>\n",
|
209 |
+
" <td>NaN</td>\n",
|
210 |
+
" <td>NaN</td>\n",
|
211 |
+
" </tr>\n",
|
212 |
+
" <tr>\n",
|
213 |
+
" <th>...</th>\n",
|
214 |
+
" <td>...</td>\n",
|
215 |
+
" <td>...</td>\n",
|
216 |
+
" <td>...</td>\n",
|
217 |
+
" <td>...</td>\n",
|
218 |
+
" <td>...</td>\n",
|
219 |
+
" <td>...</td>\n",
|
220 |
+
" <td>...</td>\n",
|
221 |
+
" <td>...</td>\n",
|
222 |
+
" <td>...</td>\n",
|
223 |
+
" <td>...</td>\n",
|
224 |
+
" <td>...</td>\n",
|
225 |
+
" <td>...</td>\n",
|
226 |
+
" <td>...</td>\n",
|
227 |
+
" </tr>\n",
|
228 |
+
" <tr>\n",
|
229 |
+
" <th>586709</th>\n",
|
230 |
+
" <td>845172</td>\n",
|
231 |
+
" <td>769</td>\n",
|
232 |
+
" <td>Winfield, KS</td>\n",
|
233 |
+
" <td>msa</td>\n",
|
234 |
+
" <td>KS</td>\n",
|
235 |
+
" <td>all homes</td>\n",
|
236 |
+
" <td>2024-01-06</td>\n",
|
237 |
+
" <td>0.094017</td>\n",
|
238 |
+
" <td>NaN</td>\n",
|
239 |
+
" <td>0.037378</td>\n",
|
240 |
+
" <td>NaN</td>\n",
|
241 |
+
" <td>NaN</td>\n",
|
242 |
+
" <td>NaN</td>\n",
|
243 |
+
" </tr>\n",
|
244 |
+
" <tr>\n",
|
245 |
+
" <th>586710</th>\n",
|
246 |
+
" <td>845172</td>\n",
|
247 |
+
" <td>769</td>\n",
|
248 |
+
" <td>Winfield, KS</td>\n",
|
249 |
+
" <td>msa</td>\n",
|
250 |
+
" <td>KS</td>\n",
|
251 |
+
" <td>all homes</td>\n",
|
252 |
+
" <td>2024-01-13</td>\n",
|
253 |
+
" <td>0.070175</td>\n",
|
254 |
+
" <td>NaN</td>\n",
|
255 |
+
" <td>0.043203</td>\n",
|
256 |
+
" <td>NaN</td>\n",
|
257 |
+
" <td>NaN</td>\n",
|
258 |
+
" <td>NaN</td>\n",
|
259 |
+
" </tr>\n",
|
260 |
+
" <tr>\n",
|
261 |
+
" <th>586711</th>\n",
|
262 |
+
" <td>845172</td>\n",
|
263 |
+
" <td>769</td>\n",
|
264 |
+
" <td>Winfield, KS</td>\n",
|
265 |
+
" <td>msa</td>\n",
|
266 |
+
" <td>KS</td>\n",
|
267 |
+
" <td>all homes</td>\n",
|
268 |
+
" <td>2024-01-20</td>\n",
|
269 |
+
" <td>0.043478</td>\n",
|
270 |
+
" <td>NaN</td>\n",
|
271 |
+
" <td>0.054073</td>\n",
|
272 |
+
" <td>NaN</td>\n",
|
273 |
+
" <td>NaN</td>\n",
|
274 |
+
" <td>NaN</td>\n",
|
275 |
+
" </tr>\n",
|
276 |
+
" <tr>\n",
|
277 |
+
" <th>586712</th>\n",
|
278 |
+
" <td>845172</td>\n",
|
279 |
+
" <td>769</td>\n",
|
280 |
+
" <td>Winfield, KS</td>\n",
|
281 |
+
" <td>msa</td>\n",
|
282 |
+
" <td>KS</td>\n",
|
283 |
+
" <td>all homes</td>\n",
|
284 |
+
" <td>2024-01-27</td>\n",
|
285 |
+
" <td>0.036697</td>\n",
|
286 |
+
" <td>NaN</td>\n",
|
287 |
+
" <td>0.061092</td>\n",
|
288 |
+
" <td>NaN</td>\n",
|
289 |
+
" <td>NaN</td>\n",
|
290 |
+
" <td>NaN</td>\n",
|
291 |
+
" </tr>\n",
|
292 |
+
" <tr>\n",
|
293 |
+
" <th>586713</th>\n",
|
294 |
+
" <td>845172</td>\n",
|
295 |
+
" <td>769</td>\n",
|
296 |
+
" <td>Winfield, KS</td>\n",
|
297 |
+
" <td>msa</td>\n",
|
298 |
+
" <td>KS</td>\n",
|
299 |
+
" <td>all homes</td>\n",
|
300 |
+
" <td>2024-02-03</td>\n",
|
301 |
+
" <td>0.077670</td>\n",
|
302 |
+
" <td>NaN</td>\n",
|
303 |
+
" <td>0.057005</td>\n",
|
304 |
+
" <td>NaN</td>\n",
|
305 |
+
" <td>NaN</td>\n",
|
306 |
+
" <td>NaN</td>\n",
|
307 |
+
" </tr>\n",
|
308 |
+
" </tbody>\n",
|
309 |
+
"</table>\n",
|
310 |
+
"<p>586714 rows × 13 columns</p>\n",
|
311 |
+
"</div>"
|
312 |
+
],
|
313 |
+
"text/plain": [
|
314 |
+
" RegionID SizeRank RegionName RegionType StateName Home Type \\\n",
|
315 |
+
"0 102001 0 United States country NaN SFR \n",
|
316 |
+
"1 102001 0 United States country NaN SFR \n",
|
317 |
+
"2 102001 0 United States country NaN SFR \n",
|
318 |
+
"3 102001 0 United States country NaN SFR \n",
|
319 |
+
"4 102001 0 United States country NaN SFR \n",
|
320 |
+
"... ... ... ... ... ... ... \n",
|
321 |
+
"586709 845172 769 Winfield, KS msa KS all homes \n",
|
322 |
+
"586710 845172 769 Winfield, KS msa KS all homes \n",
|
323 |
+
"586711 845172 769 Winfield, KS msa KS all homes \n",
|
324 |
+
"586712 845172 769 Winfield, KS msa KS all homes \n",
|
325 |
+
"586713 845172 769 Winfield, KS msa KS all homes \n",
|
326 |
+
"\n",
|
327 |
+
" Date Percent Listings Price Cut \\\n",
|
328 |
+
"0 2018-01-06 NaN \n",
|
329 |
+
"1 2018-01-13 0.049042 \n",
|
330 |
+
"2 2018-01-20 0.044740 \n",
|
331 |
+
"3 2018-01-27 0.047930 \n",
|
332 |
+
"4 2018-02-03 0.047622 \n",
|
333 |
+
"... ... ... \n",
|
334 |
+
"586709 2024-01-06 0.094017 \n",
|
335 |
+
"586710 2024-01-13 0.070175 \n",
|
336 |
+
"586711 2024-01-20 0.043478 \n",
|
337 |
+
"586712 2024-01-27 0.036697 \n",
|
338 |
+
"586713 2024-02-03 0.077670 \n",
|
339 |
+
"\n",
|
340 |
+
" Mean Listings Price Cut Amount Percent Listings Price Cut (Smoothed) \\\n",
|
341 |
+
"0 13508.368375 NaN \n",
|
342 |
+
"1 14114.788383 NaN \n",
|
343 |
+
"2 14326.128956 NaN \n",
|
344 |
+
"3 13998.585612 NaN \n",
|
345 |
+
"4 14120.035549 0.047622 \n",
|
346 |
+
"... ... ... \n",
|
347 |
+
"586709 NaN 0.037378 \n",
|
348 |
+
"586710 NaN 0.043203 \n",
|
349 |
+
"586711 NaN 0.054073 \n",
|
350 |
+
"586712 NaN 0.061092 \n",
|
351 |
+
"586713 NaN 0.057005 \n",
|
352 |
+
"\n",
|
353 |
+
" Mean Listings Price Cut Amount (Smoothed) \\\n",
|
354 |
+
"0 NaN \n",
|
355 |
+
"1 NaN \n",
|
356 |
+
"2 NaN \n",
|
357 |
+
"3 13998.585612 \n",
|
358 |
+
"4 14120.035549 \n",
|
359 |
+
"... ... \n",
|
360 |
+
"586709 NaN \n",
|
361 |
+
"586710 NaN \n",
|
362 |
+
"586711 NaN \n",
|
363 |
+
"586712 NaN \n",
|
364 |
+
"586713 NaN \n",
|
365 |
+
"\n",
|
366 |
+
" Median Days on Pending (Smoothed) Median Days on Pending \n",
|
367 |
+
"0 NaN NaN \n",
|
368 |
+
"1 NaN NaN \n",
|
369 |
+
"2 NaN NaN \n",
|
370 |
+
"3 NaN NaN \n",
|
371 |
+
"4 NaN NaN \n",
|
372 |
+
"... ... ... \n",
|
373 |
+
"586709 NaN NaN \n",
|
374 |
+
"586710 NaN NaN \n",
|
375 |
+
"586711 NaN NaN \n",
|
376 |
+
"586712 NaN NaN \n",
|
377 |
+
"586713 NaN NaN \n",
|
378 |
+
"\n",
|
379 |
+
"[586714 rows x 13 columns]"
|
380 |
+
]
|
381 |
+
},
|
382 |
+
"execution_count": 8,
|
383 |
+
"metadata": {},
|
384 |
+
"output_type": "execute_result"
|
385 |
}
|
386 |
],
|
387 |
"source": [
|
|
|
439 |
},
|
440 |
{
|
441 |
"cell_type": "code",
|
442 |
+
"execution_count": 9,
|
443 |
"metadata": {},
|
444 |
"outputs": [
|
445 |
{
|
|
|
729 |
"[586714 rows x 13 columns]"
|
730 |
]
|
731 |
},
|
732 |
+
"execution_count": 9,
|
733 |
"metadata": {},
|
734 |
"output_type": "execute_result"
|
735 |
}
|
processors/for_sale_listings.ipynb
CHANGED
@@ -632,18 +632,18 @@
|
|
632 |
"578651 845172 769 Winfield, KS msa KS all homes \n",
|
633 |
"578652 845172 769 Winfield, KS msa KS all homes \n",
|
634 |
"\n",
|
635 |
-
"
|
636 |
-
"0
|
637 |
-
"1
|
638 |
-
"2
|
639 |
-
"3
|
640 |
-
"4
|
641 |
-
"...
|
642 |
-
"578648
|
643 |
-
"578649
|
644 |
-
"578650
|
645 |
-
"578651
|
646 |
-
"578652
|
647 |
"\n",
|
648 |
" New Pending (Smoothed) New Listings New Listings (Smoothed) \\\n",
|
649 |
"0 NaN NaN NaN \n",
|
|
|
632 |
"578651 845172 769 Winfield, KS msa KS all homes \n",
|
633 |
"578652 845172 769 Winfield, KS msa KS all homes \n",
|
634 |
"\n",
|
635 |
+
" Date Median Listing Price Median Listing Price (Smoothed) \\\n",
|
636 |
+
"0 2018-01-13 259000.0 NaN \n",
|
637 |
+
"1 2018-01-20 259900.0 NaN \n",
|
638 |
+
"2 2018-01-27 259900.0 NaN \n",
|
639 |
+
"3 2018-02-03 260000.0 259700.0 \n",
|
640 |
+
"4 2018-02-10 264900.0 261175.0 \n",
|
641 |
+
"... ... ... ... \n",
|
642 |
+
"578648 2023-12-09 134950.0 138913.0 \n",
|
643 |
+
"578649 2023-12-16 120000.0 133938.0 \n",
|
644 |
+
"578650 2023-12-23 111000.0 126463.0 \n",
|
645 |
+
"578651 2023-12-30 126950.0 123225.0 \n",
|
646 |
+
"578652 2024-01-06 128000.0 121488.0 \n",
|
647 |
"\n",
|
648 |
" New Pending (Smoothed) New Listings New Listings (Smoothed) \\\n",
|
649 |
"0 NaN NaN NaN \n",
|
processors/home_values.ipynb
CHANGED
@@ -32,7 +32,7 @@
|
|
32 |
},
|
33 |
{
|
34 |
"cell_type": "code",
|
35 |
-
"execution_count":
|
36 |
"metadata": {},
|
37 |
"outputs": [
|
38 |
{
|
@@ -140,7 +140,7 @@
|
|
140 |
" <td>state</td>\n",
|
141 |
" <td>nan</td>\n",
|
142 |
" <td>1-Bedroom</td>\n",
|
143 |
-
" <td>all homes
|
144 |
" <td>2000-01-31</td>\n",
|
145 |
" <td>81310.639504</td>\n",
|
146 |
" <td>NaN</td>\n",
|
@@ -154,7 +154,7 @@
|
|
154 |
" <td>state</td>\n",
|
155 |
" <td>nan</td>\n",
|
156 |
" <td>1-Bedroom</td>\n",
|
157 |
-
" <td>all homes
|
158 |
" <td>2000-02-29</td>\n",
|
159 |
" <td>80419.761984</td>\n",
|
160 |
" <td>NaN</td>\n",
|
@@ -168,7 +168,7 @@
|
|
168 |
" <td>state</td>\n",
|
169 |
" <td>nan</td>\n",
|
170 |
" <td>1-Bedroom</td>\n",
|
171 |
-
" <td>all homes
|
172 |
" <td>2000-03-31</td>\n",
|
173 |
" <td>80480.449461</td>\n",
|
174 |
" <td>NaN</td>\n",
|
@@ -182,7 +182,7 @@
|
|
182 |
" <td>state</td>\n",
|
183 |
" <td>nan</td>\n",
|
184 |
" <td>1-Bedroom</td>\n",
|
185 |
-
" <td>all homes
|
186 |
" <td>2000-04-30</td>\n",
|
187 |
" <td>79799.206525</td>\n",
|
188 |
" <td>NaN</td>\n",
|
@@ -196,7 +196,7 @@
|
|
196 |
" <td>state</td>\n",
|
197 |
" <td>nan</td>\n",
|
198 |
" <td>1-Bedroom</td>\n",
|
199 |
-
" <td>all homes
|
200 |
" <td>2000-05-31</td>\n",
|
201 |
" <td>79666.469861</td>\n",
|
202 |
" <td>NaN</td>\n",
|
@@ -224,7 +224,7 @@
|
|
224 |
" <td>state</td>\n",
|
225 |
" <td>nan</td>\n",
|
226 |
" <td>All Bedrooms</td>\n",
|
227 |
-
" <td>condo</td>\n",
|
228 |
" <td>2023-09-30</td>\n",
|
229 |
" <td>486974.735908</td>\n",
|
230 |
" <td>NaN</td>\n",
|
@@ -238,7 +238,7 @@
|
|
238 |
" <td>state</td>\n",
|
239 |
" <td>nan</td>\n",
|
240 |
" <td>All Bedrooms</td>\n",
|
241 |
-
" <td>condo</td>\n",
|
242 |
" <td>2023-10-31</td>\n",
|
243 |
" <td>485847.539614</td>\n",
|
244 |
" <td>NaN</td>\n",
|
@@ -252,7 +252,7 @@
|
|
252 |
" <td>state</td>\n",
|
253 |
" <td>nan</td>\n",
|
254 |
" <td>All Bedrooms</td>\n",
|
255 |
-
" <td>condo</td>\n",
|
256 |
" <td>2023-11-30</td>\n",
|
257 |
" <td>484223.885775</td>\n",
|
258 |
" <td>NaN</td>\n",
|
@@ -266,7 +266,7 @@
|
|
266 |
" <td>state</td>\n",
|
267 |
" <td>nan</td>\n",
|
268 |
" <td>All Bedrooms</td>\n",
|
269 |
-
" <td>condo</td>\n",
|
270 |
" <td>2023-12-31</td>\n",
|
271 |
" <td>481522.403338</td>\n",
|
272 |
" <td>NaN</td>\n",
|
@@ -280,7 +280,7 @@
|
|
280 |
" <td>state</td>\n",
|
281 |
" <td>nan</td>\n",
|
282 |
" <td>All Bedrooms</td>\n",
|
283 |
-
" <td>condo</td>\n",
|
284 |
" <td>2024-01-31</td>\n",
|
285 |
" <td>481181.718200</td>\n",
|
286 |
" <td>NaN</td>\n",
|
@@ -305,18 +305,18 @@
|
|
305 |
"117910 62 51 Wyoming state nan All Bedrooms \n",
|
306 |
"117911 62 51 Wyoming state nan All Bedrooms \n",
|
307 |
"\n",
|
308 |
-
"
|
309 |
-
"0
|
310 |
-
"1
|
311 |
-
"2
|
312 |
-
"3
|
313 |
-
"4
|
314 |
-
"...
|
315 |
-
"117907
|
316 |
-
"117908
|
317 |
-
"117909
|
318 |
-
"117910
|
319 |
-
"117911
|
320 |
"\n",
|
321 |
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
322 |
"0 81310.639504 \n",
|
@@ -360,7 +360,7 @@
|
|
360 |
"[117912 rows x 11 columns]"
|
361 |
]
|
362 |
},
|
363 |
-
"execution_count":
|
364 |
"metadata": {},
|
365 |
"output_type": "execute_result"
|
366 |
}
|
@@ -466,7 +466,7 @@
|
|
466 |
},
|
467 |
{
|
468 |
"cell_type": "code",
|
469 |
-
"execution_count":
|
470 |
"metadata": {},
|
471 |
"outputs": [
|
472 |
{
|
@@ -499,15 +499,8 @@
|
|
499 |
" <th>Home Type</th>\n",
|
500 |
" <th>Date</th>\n",
|
501 |
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
502 |
-
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_1</th>\n",
|
503 |
-
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_2</th>\n",
|
504 |
" <th>Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
505 |
-
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_4</th>\n",
|
506 |
-
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_5</th>\n",
|
507 |
-
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_6</th>\n",
|
508 |
" <th>Top Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
509 |
-
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_8</th>\n",
|
510 |
-
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_9</th>\n",
|
511 |
" </tr>\n",
|
512 |
" </thead>\n",
|
513 |
" <tbody>\n",
|
@@ -518,19 +511,12 @@
|
|
518 |
" <td>Alaska</td>\n",
|
519 |
" <td>state</td>\n",
|
520 |
" <td>Alaska</td>\n",
|
521 |
-
" <td>1-
|
522 |
-
" <td>all homes
|
523 |
" <td>2000-01-31</td>\n",
|
|
|
524 |
" <td>NaN</td>\n",
|
525 |
" <td>NaN</td>\n",
|
526 |
-
" <td>NaN</td>\n",
|
527 |
-
" <td>NaN</td>\n",
|
528 |
-
" <td>NaN</td>\n",
|
529 |
-
" <td>NaN</td>\n",
|
530 |
-
" <td>NaN</td>\n",
|
531 |
-
" <td>NaN</td>\n",
|
532 |
-
" <td>NaN</td>\n",
|
533 |
-
" <td>81310.639504</td>\n",
|
534 |
" </tr>\n",
|
535 |
" <tr>\n",
|
536 |
" <th>1</th>\n",
|
@@ -539,19 +525,12 @@
|
|
539 |
" <td>Alaska</td>\n",
|
540 |
" <td>state</td>\n",
|
541 |
" <td>Alaska</td>\n",
|
542 |
-
" <td>1-
|
543 |
-
" <td>all homes
|
544 |
" <td>2000-02-29</td>\n",
|
|
|
545 |
" <td>NaN</td>\n",
|
546 |
" <td>NaN</td>\n",
|
547 |
-
" <td>NaN</td>\n",
|
548 |
-
" <td>NaN</td>\n",
|
549 |
-
" <td>NaN</td>\n",
|
550 |
-
" <td>NaN</td>\n",
|
551 |
-
" <td>NaN</td>\n",
|
552 |
-
" <td>NaN</td>\n",
|
553 |
-
" <td>NaN</td>\n",
|
554 |
-
" <td>80419.761984</td>\n",
|
555 |
" </tr>\n",
|
556 |
" <tr>\n",
|
557 |
" <th>2</th>\n",
|
@@ -560,19 +539,12 @@
|
|
560 |
" <td>Alaska</td>\n",
|
561 |
" <td>state</td>\n",
|
562 |
" <td>Alaska</td>\n",
|
563 |
-
" <td>1-
|
564 |
-
" <td>all homes
|
565 |
" <td>2000-03-31</td>\n",
|
|
|
566 |
" <td>NaN</td>\n",
|
567 |
" <td>NaN</td>\n",
|
568 |
-
" <td>NaN</td>\n",
|
569 |
-
" <td>NaN</td>\n",
|
570 |
-
" <td>NaN</td>\n",
|
571 |
-
" <td>NaN</td>\n",
|
572 |
-
" <td>NaN</td>\n",
|
573 |
-
" <td>NaN</td>\n",
|
574 |
-
" <td>NaN</td>\n",
|
575 |
-
" <td>80480.449461</td>\n",
|
576 |
" </tr>\n",
|
577 |
" <tr>\n",
|
578 |
" <th>3</th>\n",
|
@@ -581,19 +553,12 @@
|
|
581 |
" <td>Alaska</td>\n",
|
582 |
" <td>state</td>\n",
|
583 |
" <td>Alaska</td>\n",
|
584 |
-
" <td>1-
|
585 |
-
" <td>all homes
|
586 |
" <td>2000-04-30</td>\n",
|
|
|
587 |
" <td>NaN</td>\n",
|
588 |
" <td>NaN</td>\n",
|
589 |
-
" <td>NaN</td>\n",
|
590 |
-
" <td>NaN</td>\n",
|
591 |
-
" <td>NaN</td>\n",
|
592 |
-
" <td>NaN</td>\n",
|
593 |
-
" <td>NaN</td>\n",
|
594 |
-
" <td>NaN</td>\n",
|
595 |
-
" <td>NaN</td>\n",
|
596 |
-
" <td>79799.206525</td>\n",
|
597 |
" </tr>\n",
|
598 |
" <tr>\n",
|
599 |
" <th>4</th>\n",
|
@@ -602,19 +567,12 @@
|
|
602 |
" <td>Alaska</td>\n",
|
603 |
" <td>state</td>\n",
|
604 |
" <td>Alaska</td>\n",
|
605 |
-
" <td>1-
|
606 |
-
" <td>all homes
|
607 |
" <td>2000-05-31</td>\n",
|
|
|
608 |
" <td>NaN</td>\n",
|
609 |
" <td>NaN</td>\n",
|
610 |
-
" <td>NaN</td>\n",
|
611 |
-
" <td>NaN</td>\n",
|
612 |
-
" <td>NaN</td>\n",
|
613 |
-
" <td>NaN</td>\n",
|
614 |
-
" <td>NaN</td>\n",
|
615 |
-
" <td>NaN</td>\n",
|
616 |
-
" <td>NaN</td>\n",
|
617 |
-
" <td>79666.469861</td>\n",
|
618 |
" </tr>\n",
|
619 |
" <tr>\n",
|
620 |
" <th>...</th>\n",
|
@@ -629,13 +587,6 @@
|
|
629 |
" <td>...</td>\n",
|
630 |
" <td>...</td>\n",
|
631 |
" <td>...</td>\n",
|
632 |
-
" <td>...</td>\n",
|
633 |
-
" <td>...</td>\n",
|
634 |
-
" <td>...</td>\n",
|
635 |
-
" <td>...</td>\n",
|
636 |
-
" <td>...</td>\n",
|
637 |
-
" <td>...</td>\n",
|
638 |
-
" <td>...</td>\n",
|
639 |
" </tr>\n",
|
640 |
" <tr>\n",
|
641 |
" <th>117907</th>\n",
|
@@ -645,18 +596,11 @@
|
|
645 |
" <td>state</td>\n",
|
646 |
" <td>Wyoming</td>\n",
|
647 |
" <td>All Bedrooms</td>\n",
|
648 |
-
" <td>condo</td>\n",
|
649 |
" <td>2023-09-30</td>\n",
|
650 |
-
" <td>NaN</td>\n",
|
651 |
-
" <td>NaN</td>\n",
|
652 |
-
" <td>NaN</td>\n",
|
653 |
-
" <td>NaN</td>\n",
|
654 |
-
" <td>NaN</td>\n",
|
655 |
" <td>486974.735908</td>\n",
|
656 |
" <td>NaN</td>\n",
|
657 |
" <td>NaN</td>\n",
|
658 |
-
" <td>NaN</td>\n",
|
659 |
-
" <td>NaN</td>\n",
|
660 |
" </tr>\n",
|
661 |
" <tr>\n",
|
662 |
" <th>117908</th>\n",
|
@@ -666,18 +610,11 @@
|
|
666 |
" <td>state</td>\n",
|
667 |
" <td>Wyoming</td>\n",
|
668 |
" <td>All Bedrooms</td>\n",
|
669 |
-
" <td>condo</td>\n",
|
670 |
" <td>2023-10-31</td>\n",
|
671 |
-
" <td>NaN</td>\n",
|
672 |
-
" <td>NaN</td>\n",
|
673 |
-
" <td>NaN</td>\n",
|
674 |
-
" <td>NaN</td>\n",
|
675 |
-
" <td>NaN</td>\n",
|
676 |
" <td>485847.539614</td>\n",
|
677 |
" <td>NaN</td>\n",
|
678 |
" <td>NaN</td>\n",
|
679 |
-
" <td>NaN</td>\n",
|
680 |
-
" <td>NaN</td>\n",
|
681 |
" </tr>\n",
|
682 |
" <tr>\n",
|
683 |
" <th>117909</th>\n",
|
@@ -687,18 +624,11 @@
|
|
687 |
" <td>state</td>\n",
|
688 |
" <td>Wyoming</td>\n",
|
689 |
" <td>All Bedrooms</td>\n",
|
690 |
-
" <td>condo</td>\n",
|
691 |
" <td>2023-11-30</td>\n",
|
692 |
-
" <td>NaN</td>\n",
|
693 |
-
" <td>NaN</td>\n",
|
694 |
-
" <td>NaN</td>\n",
|
695 |
-
" <td>NaN</td>\n",
|
696 |
-
" <td>NaN</td>\n",
|
697 |
" <td>484223.885775</td>\n",
|
698 |
" <td>NaN</td>\n",
|
699 |
" <td>NaN</td>\n",
|
700 |
-
" <td>NaN</td>\n",
|
701 |
-
" <td>NaN</td>\n",
|
702 |
" </tr>\n",
|
703 |
" <tr>\n",
|
704 |
" <th>117910</th>\n",
|
@@ -708,18 +638,11 @@
|
|
708 |
" <td>state</td>\n",
|
709 |
" <td>Wyoming</td>\n",
|
710 |
" <td>All Bedrooms</td>\n",
|
711 |
-
" <td>condo</td>\n",
|
712 |
" <td>2023-12-31</td>\n",
|
713 |
-
" <td>NaN</td>\n",
|
714 |
-
" <td>NaN</td>\n",
|
715 |
-
" <td>NaN</td>\n",
|
716 |
-
" <td>NaN</td>\n",
|
717 |
-
" <td>NaN</td>\n",
|
718 |
" <td>481522.403338</td>\n",
|
719 |
" <td>NaN</td>\n",
|
720 |
" <td>NaN</td>\n",
|
721 |
-
" <td>NaN</td>\n",
|
722 |
-
" <td>NaN</td>\n",
|
723 |
" </tr>\n",
|
724 |
" <tr>\n",
|
725 |
" <th>117911</th>\n",
|
@@ -729,31 +652,24 @@
|
|
729 |
" <td>state</td>\n",
|
730 |
" <td>Wyoming</td>\n",
|
731 |
" <td>All Bedrooms</td>\n",
|
732 |
-
" <td>condo</td>\n",
|
733 |
" <td>2024-01-31</td>\n",
|
734 |
-
" <td>NaN</td>\n",
|
735 |
-
" <td>NaN</td>\n",
|
736 |
-
" <td>NaN</td>\n",
|
737 |
-
" <td>NaN</td>\n",
|
738 |
-
" <td>NaN</td>\n",
|
739 |
" <td>481181.718200</td>\n",
|
740 |
" <td>NaN</td>\n",
|
741 |
" <td>NaN</td>\n",
|
742 |
-
" <td>NaN</td>\n",
|
743 |
-
" <td>NaN</td>\n",
|
744 |
" </tr>\n",
|
745 |
" </tbody>\n",
|
746 |
"</table>\n",
|
747 |
-
"<p>117912 rows ×
|
748 |
"</div>"
|
749 |
],
|
750 |
"text/plain": [
|
751 |
" RegionID SizeRank RegionName RegionType StateName Bedroom Count \\\n",
|
752 |
-
"0 3 48 Alaska state Alaska
|
753 |
-
"1 3 48 Alaska state Alaska
|
754 |
-
"2 3 48 Alaska state Alaska
|
755 |
-
"3 3 48 Alaska state Alaska
|
756 |
-
"4 3 48 Alaska state Alaska
|
757 |
"... ... ... ... ... ... ... \n",
|
758 |
"117907 62 51 Wyoming state Wyoming All Bedrooms \n",
|
759 |
"117908 62 51 Wyoming state Wyoming All Bedrooms \n",
|
@@ -761,57 +677,31 @@
|
|
761 |
"117910 62 51 Wyoming state Wyoming All Bedrooms \n",
|
762 |
"117911 62 51 Wyoming state Wyoming All Bedrooms \n",
|
763 |
"\n",
|
764 |
-
"
|
765 |
-
"0
|
766 |
-
"1
|
767 |
-
"2
|
768 |
-
"3
|
769 |
-
"4
|
770 |
-
"...
|
771 |
-
"117907
|
772 |
-
"117908
|
773 |
-
"117909
|
774 |
-
"117910
|
775 |
-
"117911
|
776 |
"\n",
|
777 |
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
778 |
-
"0
|
779 |
-
"1
|
780 |
-
"2
|
781 |
-
"3
|
782 |
-
"4
|
783 |
"... ... \n",
|
784 |
-
"117907
|
785 |
-
"117908
|
786 |
-
"117909
|
787 |
-
"117910
|
788 |
-
"117911
|
789 |
-
"\n",
|
790 |
-
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_1 \\\n",
|
791 |
-
"0 NaN \n",
|
792 |
-
"1 NaN \n",
|
793 |
-
"2 NaN \n",
|
794 |
-
"3 NaN \n",
|
795 |
-
"4 NaN \n",
|
796 |
-
"... ... \n",
|
797 |
-
"117907 NaN \n",
|
798 |
-
"117908 NaN \n",
|
799 |
-
"117909 NaN \n",
|
800 |
-
"117910 NaN \n",
|
801 |
-
"117911 NaN \n",
|
802 |
-
"\n",
|
803 |
-
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_2 \\\n",
|
804 |
-
"0 NaN \n",
|
805 |
-
"1 NaN \n",
|
806 |
-
"2 NaN \n",
|
807 |
-
"3 NaN \n",
|
808 |
-
"4 NaN \n",
|
809 |
-
"... ... \n",
|
810 |
-
"117907 NaN \n",
|
811 |
-
"117908 NaN \n",
|
812 |
-
"117909 NaN \n",
|
813 |
-
"117910 NaN \n",
|
814 |
-
"117911 NaN \n",
|
815 |
"\n",
|
816 |
" Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
817 |
"0 NaN \n",
|
@@ -826,88 +716,23 @@
|
|
826 |
"117910 NaN \n",
|
827 |
"117911 NaN \n",
|
828 |
"\n",
|
829 |
-
"
|
830 |
-
"0
|
831 |
-
"1
|
832 |
-
"2
|
833 |
-
"3
|
834 |
-
"4
|
835 |
-
"...
|
836 |
-
"117907
|
837 |
-
"117908
|
838 |
-
"117909
|
839 |
-
"117910
|
840 |
-
"117911
|
841 |
-
"\n",
|
842 |
-
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_5 \\\n",
|
843 |
-
"0 NaN \n",
|
844 |
-
"1 NaN \n",
|
845 |
-
"2 NaN \n",
|
846 |
-
"3 NaN \n",
|
847 |
-
"4 NaN \n",
|
848 |
-
"... ... \n",
|
849 |
-
"117907 486974.735908 \n",
|
850 |
-
"117908 485847.539614 \n",
|
851 |
-
"117909 484223.885775 \n",
|
852 |
-
"117910 481522.403338 \n",
|
853 |
-
"117911 481181.718200 \n",
|
854 |
-
"\n",
|
855 |
-
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_6 \\\n",
|
856 |
-
"0 NaN \n",
|
857 |
-
"1 NaN \n",
|
858 |
-
"2 NaN \n",
|
859 |
-
"3 NaN \n",
|
860 |
-
"4 NaN \n",
|
861 |
-
"... ... \n",
|
862 |
-
"117907 NaN \n",
|
863 |
-
"117908 NaN \n",
|
864 |
-
"117909 NaN \n",
|
865 |
-
"117910 NaN \n",
|
866 |
-
"117911 NaN \n",
|
867 |
-
"\n",
|
868 |
-
" Top Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
869 |
-
"0 NaN \n",
|
870 |
-
"1 NaN \n",
|
871 |
-
"2 NaN \n",
|
872 |
-
"3 NaN \n",
|
873 |
-
"4 NaN \n",
|
874 |
-
"... ... \n",
|
875 |
-
"117907 NaN \n",
|
876 |
-
"117908 NaN \n",
|
877 |
-
"117909 NaN \n",
|
878 |
-
"117910 NaN \n",
|
879 |
-
"117911 NaN \n",
|
880 |
-
"\n",
|
881 |
-
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_8 \\\n",
|
882 |
-
"0 NaN \n",
|
883 |
-
"1 NaN \n",
|
884 |
-
"2 NaN \n",
|
885 |
-
"3 NaN \n",
|
886 |
-
"4 NaN \n",
|
887 |
-
"... ... \n",
|
888 |
-
"117907 NaN \n",
|
889 |
-
"117908 NaN \n",
|
890 |
-
"117909 NaN \n",
|
891 |
-
"117910 NaN \n",
|
892 |
-
"117911 NaN \n",
|
893 |
-
"\n",
|
894 |
-
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_9 \n",
|
895 |
-
"0 81310.639504 \n",
|
896 |
-
"1 80419.761984 \n",
|
897 |
-
"2 80480.449461 \n",
|
898 |
-
"3 79799.206525 \n",
|
899 |
-
"4 79666.469861 \n",
|
900 |
-
"... ... \n",
|
901 |
-
"117907 NaN \n",
|
902 |
-
"117908 NaN \n",
|
903 |
-
"117909 NaN \n",
|
904 |
-
"117910 NaN \n",
|
905 |
-
"117911 NaN \n",
|
906 |
"\n",
|
907 |
-
"[117912 rows x
|
908 |
]
|
909 |
},
|
910 |
-
"execution_count":
|
911 |
"metadata": {},
|
912 |
"output_type": "execute_result"
|
913 |
}
|
@@ -938,7 +763,7 @@
|
|
938 |
},
|
939 |
{
|
940 |
"cell_type": "code",
|
941 |
-
"execution_count":
|
942 |
"metadata": {},
|
943 |
"outputs": [
|
944 |
{
|
@@ -971,15 +796,8 @@
|
|
971 |
" <th>Home Type</th>\n",
|
972 |
" <th>Date</th>\n",
|
973 |
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
974 |
-
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_1</th>\n",
|
975 |
-
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_2</th>\n",
|
976 |
" <th>Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
977 |
-
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_4</th>\n",
|
978 |
-
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_5</th>\n",
|
979 |
-
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_6</th>\n",
|
980 |
" <th>Top Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
981 |
-
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_8</th>\n",
|
982 |
-
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_9</th>\n",
|
983 |
" </tr>\n",
|
984 |
" </thead>\n",
|
985 |
" <tbody>\n",
|
@@ -990,19 +808,12 @@
|
|
990 |
" <td>Alaska</td>\n",
|
991 |
" <td>state</td>\n",
|
992 |
" <td>Alaska</td>\n",
|
993 |
-
" <td>1-
|
994 |
-
" <td>all homes
|
995 |
" <td>2000-01-31</td>\n",
|
|
|
996 |
" <td>NaN</td>\n",
|
997 |
" <td>NaN</td>\n",
|
998 |
-
" <td>NaN</td>\n",
|
999 |
-
" <td>NaN</td>\n",
|
1000 |
-
" <td>NaN</td>\n",
|
1001 |
-
" <td>NaN</td>\n",
|
1002 |
-
" <td>NaN</td>\n",
|
1003 |
-
" <td>NaN</td>\n",
|
1004 |
-
" <td>NaN</td>\n",
|
1005 |
-
" <td>81310.639504</td>\n",
|
1006 |
" </tr>\n",
|
1007 |
" <tr>\n",
|
1008 |
" <th>1</th>\n",
|
@@ -1011,19 +822,12 @@
|
|
1011 |
" <td>Alaska</td>\n",
|
1012 |
" <td>state</td>\n",
|
1013 |
" <td>Alaska</td>\n",
|
1014 |
-
" <td>1-
|
1015 |
-
" <td>all homes
|
1016 |
" <td>2000-02-29</td>\n",
|
|
|
1017 |
" <td>NaN</td>\n",
|
1018 |
" <td>NaN</td>\n",
|
1019 |
-
" <td>NaN</td>\n",
|
1020 |
-
" <td>NaN</td>\n",
|
1021 |
-
" <td>NaN</td>\n",
|
1022 |
-
" <td>NaN</td>\n",
|
1023 |
-
" <td>NaN</td>\n",
|
1024 |
-
" <td>NaN</td>\n",
|
1025 |
-
" <td>NaN</td>\n",
|
1026 |
-
" <td>80419.761984</td>\n",
|
1027 |
" </tr>\n",
|
1028 |
" <tr>\n",
|
1029 |
" <th>2</th>\n",
|
@@ -1032,19 +836,12 @@
|
|
1032 |
" <td>Alaska</td>\n",
|
1033 |
" <td>state</td>\n",
|
1034 |
" <td>Alaska</td>\n",
|
1035 |
-
" <td>1-
|
1036 |
-
" <td>all homes
|
1037 |
" <td>2000-03-31</td>\n",
|
|
|
1038 |
" <td>NaN</td>\n",
|
1039 |
" <td>NaN</td>\n",
|
1040 |
-
" <td>NaN</td>\n",
|
1041 |
-
" <td>NaN</td>\n",
|
1042 |
-
" <td>NaN</td>\n",
|
1043 |
-
" <td>NaN</td>\n",
|
1044 |
-
" <td>NaN</td>\n",
|
1045 |
-
" <td>NaN</td>\n",
|
1046 |
-
" <td>NaN</td>\n",
|
1047 |
-
" <td>80480.449461</td>\n",
|
1048 |
" </tr>\n",
|
1049 |
" <tr>\n",
|
1050 |
" <th>3</th>\n",
|
@@ -1053,19 +850,12 @@
|
|
1053 |
" <td>Alaska</td>\n",
|
1054 |
" <td>state</td>\n",
|
1055 |
" <td>Alaska</td>\n",
|
1056 |
-
" <td>1-
|
1057 |
-
" <td>all homes
|
1058 |
" <td>2000-04-30</td>\n",
|
|
|
1059 |
" <td>NaN</td>\n",
|
1060 |
" <td>NaN</td>\n",
|
1061 |
-
" <td>NaN</td>\n",
|
1062 |
-
" <td>NaN</td>\n",
|
1063 |
-
" <td>NaN</td>\n",
|
1064 |
-
" <td>NaN</td>\n",
|
1065 |
-
" <td>NaN</td>\n",
|
1066 |
-
" <td>NaN</td>\n",
|
1067 |
-
" <td>NaN</td>\n",
|
1068 |
-
" <td>79799.206525</td>\n",
|
1069 |
" </tr>\n",
|
1070 |
" <tr>\n",
|
1071 |
" <th>4</th>\n",
|
@@ -1074,19 +864,12 @@
|
|
1074 |
" <td>Alaska</td>\n",
|
1075 |
" <td>state</td>\n",
|
1076 |
" <td>Alaska</td>\n",
|
1077 |
-
" <td>1-
|
1078 |
-
" <td>all homes
|
1079 |
" <td>2000-05-31</td>\n",
|
|
|
1080 |
" <td>NaN</td>\n",
|
1081 |
" <td>NaN</td>\n",
|
1082 |
-
" <td>NaN</td>\n",
|
1083 |
-
" <td>NaN</td>\n",
|
1084 |
-
" <td>NaN</td>\n",
|
1085 |
-
" <td>NaN</td>\n",
|
1086 |
-
" <td>NaN</td>\n",
|
1087 |
-
" <td>NaN</td>\n",
|
1088 |
-
" <td>NaN</td>\n",
|
1089 |
-
" <td>79666.469861</td>\n",
|
1090 |
" </tr>\n",
|
1091 |
" <tr>\n",
|
1092 |
" <th>...</th>\n",
|
@@ -1101,13 +884,6 @@
|
|
1101 |
" <td>...</td>\n",
|
1102 |
" <td>...</td>\n",
|
1103 |
" <td>...</td>\n",
|
1104 |
-
" <td>...</td>\n",
|
1105 |
-
" <td>...</td>\n",
|
1106 |
-
" <td>...</td>\n",
|
1107 |
-
" <td>...</td>\n",
|
1108 |
-
" <td>...</td>\n",
|
1109 |
-
" <td>...</td>\n",
|
1110 |
-
" <td>...</td>\n",
|
1111 |
" </tr>\n",
|
1112 |
" <tr>\n",
|
1113 |
" <th>117907</th>\n",
|
@@ -1117,18 +893,11 @@
|
|
1117 |
" <td>state</td>\n",
|
1118 |
" <td>Wyoming</td>\n",
|
1119 |
" <td>All Bedrooms</td>\n",
|
1120 |
-
" <td>condo</td>\n",
|
1121 |
" <td>2023-09-30</td>\n",
|
1122 |
-
" <td>NaN</td>\n",
|
1123 |
-
" <td>NaN</td>\n",
|
1124 |
-
" <td>NaN</td>\n",
|
1125 |
-
" <td>NaN</td>\n",
|
1126 |
-
" <td>NaN</td>\n",
|
1127 |
" <td>486974.735908</td>\n",
|
1128 |
" <td>NaN</td>\n",
|
1129 |
" <td>NaN</td>\n",
|
1130 |
-
" <td>NaN</td>\n",
|
1131 |
-
" <td>NaN</td>\n",
|
1132 |
" </tr>\n",
|
1133 |
" <tr>\n",
|
1134 |
" <th>117908</th>\n",
|
@@ -1138,18 +907,11 @@
|
|
1138 |
" <td>state</td>\n",
|
1139 |
" <td>Wyoming</td>\n",
|
1140 |
" <td>All Bedrooms</td>\n",
|
1141 |
-
" <td>condo</td>\n",
|
1142 |
" <td>2023-10-31</td>\n",
|
1143 |
-
" <td>NaN</td>\n",
|
1144 |
-
" <td>NaN</td>\n",
|
1145 |
-
" <td>NaN</td>\n",
|
1146 |
-
" <td>NaN</td>\n",
|
1147 |
-
" <td>NaN</td>\n",
|
1148 |
" <td>485847.539614</td>\n",
|
1149 |
" <td>NaN</td>\n",
|
1150 |
" <td>NaN</td>\n",
|
1151 |
-
" <td>NaN</td>\n",
|
1152 |
-
" <td>NaN</td>\n",
|
1153 |
" </tr>\n",
|
1154 |
" <tr>\n",
|
1155 |
" <th>117909</th>\n",
|
@@ -1159,18 +921,11 @@
|
|
1159 |
" <td>state</td>\n",
|
1160 |
" <td>Wyoming</td>\n",
|
1161 |
" <td>All Bedrooms</td>\n",
|
1162 |
-
" <td>condo</td>\n",
|
1163 |
" <td>2023-11-30</td>\n",
|
1164 |
-
" <td>NaN</td>\n",
|
1165 |
-
" <td>NaN</td>\n",
|
1166 |
-
" <td>NaN</td>\n",
|
1167 |
-
" <td>NaN</td>\n",
|
1168 |
-
" <td>NaN</td>\n",
|
1169 |
" <td>484223.885775</td>\n",
|
1170 |
" <td>NaN</td>\n",
|
1171 |
" <td>NaN</td>\n",
|
1172 |
-
" <td>NaN</td>\n",
|
1173 |
-
" <td>NaN</td>\n",
|
1174 |
" </tr>\n",
|
1175 |
" <tr>\n",
|
1176 |
" <th>117910</th>\n",
|
@@ -1180,18 +935,11 @@
|
|
1180 |
" <td>state</td>\n",
|
1181 |
" <td>Wyoming</td>\n",
|
1182 |
" <td>All Bedrooms</td>\n",
|
1183 |
-
" <td>condo</td>\n",
|
1184 |
" <td>2023-12-31</td>\n",
|
1185 |
-
" <td>NaN</td>\n",
|
1186 |
-
" <td>NaN</td>\n",
|
1187 |
-
" <td>NaN</td>\n",
|
1188 |
-
" <td>NaN</td>\n",
|
1189 |
-
" <td>NaN</td>\n",
|
1190 |
" <td>481522.403338</td>\n",
|
1191 |
" <td>NaN</td>\n",
|
1192 |
" <td>NaN</td>\n",
|
1193 |
-
" <td>NaN</td>\n",
|
1194 |
-
" <td>NaN</td>\n",
|
1195 |
" </tr>\n",
|
1196 |
" <tr>\n",
|
1197 |
" <th>117911</th>\n",
|
@@ -1201,31 +949,24 @@
|
|
1201 |
" <td>state</td>\n",
|
1202 |
" <td>Wyoming</td>\n",
|
1203 |
" <td>All Bedrooms</td>\n",
|
1204 |
-
" <td>condo</td>\n",
|
1205 |
" <td>2024-01-31</td>\n",
|
1206 |
-
" <td>NaN</td>\n",
|
1207 |
-
" <td>NaN</td>\n",
|
1208 |
-
" <td>NaN</td>\n",
|
1209 |
-
" <td>NaN</td>\n",
|
1210 |
-
" <td>NaN</td>\n",
|
1211 |
" <td>481181.718200</td>\n",
|
1212 |
" <td>NaN</td>\n",
|
1213 |
" <td>NaN</td>\n",
|
1214 |
-
" <td>NaN</td>\n",
|
1215 |
-
" <td>NaN</td>\n",
|
1216 |
" </tr>\n",
|
1217 |
" </tbody>\n",
|
1218 |
"</table>\n",
|
1219 |
-
"<p>117912 rows ×
|
1220 |
"</div>"
|
1221 |
],
|
1222 |
"text/plain": [
|
1223 |
" Region ID Size Rank Region Region Type State Bedroom Count \\\n",
|
1224 |
-
"0 3 48 Alaska state Alaska
|
1225 |
-
"1 3 48 Alaska state Alaska
|
1226 |
-
"2 3 48 Alaska state Alaska
|
1227 |
-
"3 3 48 Alaska state Alaska
|
1228 |
-
"4 3 48 Alaska state Alaska
|
1229 |
"... ... ... ... ... ... ... \n",
|
1230 |
"117907 62 51 Wyoming state Wyoming All Bedrooms \n",
|
1231 |
"117908 62 51 Wyoming state Wyoming All Bedrooms \n",
|
@@ -1233,57 +974,31 @@
|
|
1233 |
"117910 62 51 Wyoming state Wyoming All Bedrooms \n",
|
1234 |
"117911 62 51 Wyoming state Wyoming All Bedrooms \n",
|
1235 |
"\n",
|
1236 |
-
"
|
1237 |
-
"0
|
1238 |
-
"1
|
1239 |
-
"2
|
1240 |
-
"3
|
1241 |
-
"4
|
1242 |
-
"...
|
1243 |
-
"117907
|
1244 |
-
"117908
|
1245 |
-
"117909
|
1246 |
-
"117910
|
1247 |
-
"117911
|
1248 |
"\n",
|
1249 |
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
1250 |
-
"0
|
1251 |
-
"1
|
1252 |
-
"2
|
1253 |
-
"3
|
1254 |
-
"4
|
1255 |
"... ... \n",
|
1256 |
-
"117907
|
1257 |
-
"117908
|
1258 |
-
"117909
|
1259 |
-
"117910
|
1260 |
-
"117911
|
1261 |
-
"\n",
|
1262 |
-
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_1 \\\n",
|
1263 |
-
"0 NaN \n",
|
1264 |
-
"1 NaN \n",
|
1265 |
-
"2 NaN \n",
|
1266 |
-
"3 NaN \n",
|
1267 |
-
"4 NaN \n",
|
1268 |
-
"... ... \n",
|
1269 |
-
"117907 NaN \n",
|
1270 |
-
"117908 NaN \n",
|
1271 |
-
"117909 NaN \n",
|
1272 |
-
"117910 NaN \n",
|
1273 |
-
"117911 NaN \n",
|
1274 |
-
"\n",
|
1275 |
-
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_2 \\\n",
|
1276 |
-
"0 NaN \n",
|
1277 |
-
"1 NaN \n",
|
1278 |
-
"2 NaN \n",
|
1279 |
-
"3 NaN \n",
|
1280 |
-
"4 NaN \n",
|
1281 |
-
"... ... \n",
|
1282 |
-
"117907 NaN \n",
|
1283 |
-
"117908 NaN \n",
|
1284 |
-
"117909 NaN \n",
|
1285 |
-
"117910 NaN \n",
|
1286 |
-
"117911 NaN \n",
|
1287 |
"\n",
|
1288 |
" Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
1289 |
"0 NaN \n",
|
@@ -1298,88 +1013,23 @@
|
|
1298 |
"117910 NaN \n",
|
1299 |
"117911 NaN \n",
|
1300 |
"\n",
|
1301 |
-
"
|
1302 |
-
"0
|
1303 |
-
"1
|
1304 |
-
"2
|
1305 |
-
"3
|
1306 |
-
"4
|
1307 |
-
"...
|
1308 |
-
"117907
|
1309 |
-
"117908
|
1310 |
-
"117909
|
1311 |
-
"117910
|
1312 |
-
"117911
|
1313 |
-
"\n",
|
1314 |
-
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_5 \\\n",
|
1315 |
-
"0 NaN \n",
|
1316 |
-
"1 NaN \n",
|
1317 |
-
"2 NaN \n",
|
1318 |
-
"3 NaN \n",
|
1319 |
-
"4 NaN \n",
|
1320 |
-
"... ... \n",
|
1321 |
-
"117907 486974.735908 \n",
|
1322 |
-
"117908 485847.539614 \n",
|
1323 |
-
"117909 484223.885775 \n",
|
1324 |
-
"117910 481522.403338 \n",
|
1325 |
-
"117911 481181.718200 \n",
|
1326 |
-
"\n",
|
1327 |
-
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_6 \\\n",
|
1328 |
-
"0 NaN \n",
|
1329 |
-
"1 NaN \n",
|
1330 |
-
"2 NaN \n",
|
1331 |
-
"3 NaN \n",
|
1332 |
-
"4 NaN \n",
|
1333 |
-
"... ... \n",
|
1334 |
-
"117907 NaN \n",
|
1335 |
-
"117908 NaN \n",
|
1336 |
-
"117909 NaN \n",
|
1337 |
-
"117910 NaN \n",
|
1338 |
-
"117911 NaN \n",
|
1339 |
-
"\n",
|
1340 |
-
" Top Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
1341 |
-
"0 NaN \n",
|
1342 |
-
"1 NaN \n",
|
1343 |
-
"2 NaN \n",
|
1344 |
-
"3 NaN \n",
|
1345 |
-
"4 NaN \n",
|
1346 |
-
"... ... \n",
|
1347 |
-
"117907 NaN \n",
|
1348 |
-
"117908 NaN \n",
|
1349 |
-
"117909 NaN \n",
|
1350 |
-
"117910 NaN \n",
|
1351 |
-
"117911 NaN \n",
|
1352 |
-
"\n",
|
1353 |
-
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_8 \\\n",
|
1354 |
-
"0 NaN \n",
|
1355 |
-
"1 NaN \n",
|
1356 |
-
"2 NaN \n",
|
1357 |
-
"3 NaN \n",
|
1358 |
-
"4 NaN \n",
|
1359 |
-
"... ... \n",
|
1360 |
-
"117907 NaN \n",
|
1361 |
-
"117908 NaN \n",
|
1362 |
-
"117909 NaN \n",
|
1363 |
-
"117910 NaN \n",
|
1364 |
-
"117911 NaN \n",
|
1365 |
-
"\n",
|
1366 |
-
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)_9 \n",
|
1367 |
-
"0 81310.639504 \n",
|
1368 |
-
"1 80419.761984 \n",
|
1369 |
-
"2 80480.449461 \n",
|
1370 |
-
"3 79799.206525 \n",
|
1371 |
-
"4 79666.469861 \n",
|
1372 |
-
"... ... \n",
|
1373 |
-
"117907 NaN \n",
|
1374 |
-
"117908 NaN \n",
|
1375 |
-
"117909 NaN \n",
|
1376 |
-
"117910 NaN \n",
|
1377 |
-
"117911 NaN \n",
|
1378 |
"\n",
|
1379 |
-
"[117912 rows x
|
1380 |
]
|
1381 |
},
|
1382 |
-
"execution_count":
|
1383 |
"metadata": {},
|
1384 |
"output_type": "execute_result"
|
1385 |
}
|
|
|
32 |
},
|
33 |
{
|
34 |
"cell_type": "code",
|
35 |
+
"execution_count": 3,
|
36 |
"metadata": {},
|
37 |
"outputs": [
|
38 |
{
|
|
|
140 |
" <td>state</td>\n",
|
141 |
" <td>nan</td>\n",
|
142 |
" <td>1-Bedroom</td>\n",
|
143 |
+
" <td>all homes</td>\n",
|
144 |
" <td>2000-01-31</td>\n",
|
145 |
" <td>81310.639504</td>\n",
|
146 |
" <td>NaN</td>\n",
|
|
|
154 |
" <td>state</td>\n",
|
155 |
" <td>nan</td>\n",
|
156 |
" <td>1-Bedroom</td>\n",
|
157 |
+
" <td>all homes</td>\n",
|
158 |
" <td>2000-02-29</td>\n",
|
159 |
" <td>80419.761984</td>\n",
|
160 |
" <td>NaN</td>\n",
|
|
|
168 |
" <td>state</td>\n",
|
169 |
" <td>nan</td>\n",
|
170 |
" <td>1-Bedroom</td>\n",
|
171 |
+
" <td>all homes</td>\n",
|
172 |
" <td>2000-03-31</td>\n",
|
173 |
" <td>80480.449461</td>\n",
|
174 |
" <td>NaN</td>\n",
|
|
|
182 |
" <td>state</td>\n",
|
183 |
" <td>nan</td>\n",
|
184 |
" <td>1-Bedroom</td>\n",
|
185 |
+
" <td>all homes</td>\n",
|
186 |
" <td>2000-04-30</td>\n",
|
187 |
" <td>79799.206525</td>\n",
|
188 |
" <td>NaN</td>\n",
|
|
|
196 |
" <td>state</td>\n",
|
197 |
" <td>nan</td>\n",
|
198 |
" <td>1-Bedroom</td>\n",
|
199 |
+
" <td>all homes</td>\n",
|
200 |
" <td>2000-05-31</td>\n",
|
201 |
" <td>79666.469861</td>\n",
|
202 |
" <td>NaN</td>\n",
|
|
|
224 |
" <td>state</td>\n",
|
225 |
" <td>nan</td>\n",
|
226 |
" <td>All Bedrooms</td>\n",
|
227 |
+
" <td>condo/co-op</td>\n",
|
228 |
" <td>2023-09-30</td>\n",
|
229 |
" <td>486974.735908</td>\n",
|
230 |
" <td>NaN</td>\n",
|
|
|
238 |
" <td>state</td>\n",
|
239 |
" <td>nan</td>\n",
|
240 |
" <td>All Bedrooms</td>\n",
|
241 |
+
" <td>condo/co-op</td>\n",
|
242 |
" <td>2023-10-31</td>\n",
|
243 |
" <td>485847.539614</td>\n",
|
244 |
" <td>NaN</td>\n",
|
|
|
252 |
" <td>state</td>\n",
|
253 |
" <td>nan</td>\n",
|
254 |
" <td>All Bedrooms</td>\n",
|
255 |
+
" <td>condo/co-op</td>\n",
|
256 |
" <td>2023-11-30</td>\n",
|
257 |
" <td>484223.885775</td>\n",
|
258 |
" <td>NaN</td>\n",
|
|
|
266 |
" <td>state</td>\n",
|
267 |
" <td>nan</td>\n",
|
268 |
" <td>All Bedrooms</td>\n",
|
269 |
+
" <td>condo/co-op</td>\n",
|
270 |
" <td>2023-12-31</td>\n",
|
271 |
" <td>481522.403338</td>\n",
|
272 |
" <td>NaN</td>\n",
|
|
|
280 |
" <td>state</td>\n",
|
281 |
" <td>nan</td>\n",
|
282 |
" <td>All Bedrooms</td>\n",
|
283 |
+
" <td>condo/co-op</td>\n",
|
284 |
" <td>2024-01-31</td>\n",
|
285 |
" <td>481181.718200</td>\n",
|
286 |
" <td>NaN</td>\n",
|
|
|
305 |
"117910 62 51 Wyoming state nan All Bedrooms \n",
|
306 |
"117911 62 51 Wyoming state nan All Bedrooms \n",
|
307 |
"\n",
|
308 |
+
" Home Type Date \\\n",
|
309 |
+
"0 all homes 2000-01-31 \n",
|
310 |
+
"1 all homes 2000-02-29 \n",
|
311 |
+
"2 all homes 2000-03-31 \n",
|
312 |
+
"3 all homes 2000-04-30 \n",
|
313 |
+
"4 all homes 2000-05-31 \n",
|
314 |
+
"... ... ... \n",
|
315 |
+
"117907 condo/co-op 2023-09-30 \n",
|
316 |
+
"117908 condo/co-op 2023-10-31 \n",
|
317 |
+
"117909 condo/co-op 2023-11-30 \n",
|
318 |
+
"117910 condo/co-op 2023-12-31 \n",
|
319 |
+
"117911 condo/co-op 2024-01-31 \n",
|
320 |
"\n",
|
321 |
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
322 |
"0 81310.639504 \n",
|
|
|
360 |
"[117912 rows x 11 columns]"
|
361 |
]
|
362 |
},
|
363 |
+
"execution_count": 3,
|
364 |
"metadata": {},
|
365 |
"output_type": "execute_result"
|
366 |
}
|
|
|
466 |
},
|
467 |
{
|
468 |
"cell_type": "code",
|
469 |
+
"execution_count": 4,
|
470 |
"metadata": {},
|
471 |
"outputs": [
|
472 |
{
|
|
|
499 |
" <th>Home Type</th>\n",
|
500 |
" <th>Date</th>\n",
|
501 |
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
|
|
|
|
502 |
" <th>Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
|
|
|
|
|
|
503 |
" <th>Top Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
|
|
|
|
504 |
" </tr>\n",
|
505 |
" </thead>\n",
|
506 |
" <tbody>\n",
|
|
|
511 |
" <td>Alaska</td>\n",
|
512 |
" <td>state</td>\n",
|
513 |
" <td>Alaska</td>\n",
|
514 |
+
" <td>1-Bedroom</td>\n",
|
515 |
+
" <td>all homes</td>\n",
|
516 |
" <td>2000-01-31</td>\n",
|
517 |
+
" <td>81310.639504</td>\n",
|
518 |
" <td>NaN</td>\n",
|
519 |
" <td>NaN</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
" </tr>\n",
|
521 |
" <tr>\n",
|
522 |
" <th>1</th>\n",
|
|
|
525 |
" <td>Alaska</td>\n",
|
526 |
" <td>state</td>\n",
|
527 |
" <td>Alaska</td>\n",
|
528 |
+
" <td>1-Bedroom</td>\n",
|
529 |
+
" <td>all homes</td>\n",
|
530 |
" <td>2000-02-29</td>\n",
|
531 |
+
" <td>80419.761984</td>\n",
|
532 |
" <td>NaN</td>\n",
|
533 |
" <td>NaN</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
534 |
" </tr>\n",
|
535 |
" <tr>\n",
|
536 |
" <th>2</th>\n",
|
|
|
539 |
" <td>Alaska</td>\n",
|
540 |
" <td>state</td>\n",
|
541 |
" <td>Alaska</td>\n",
|
542 |
+
" <td>1-Bedroom</td>\n",
|
543 |
+
" <td>all homes</td>\n",
|
544 |
" <td>2000-03-31</td>\n",
|
545 |
+
" <td>80480.449461</td>\n",
|
546 |
" <td>NaN</td>\n",
|
547 |
" <td>NaN</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
548 |
" </tr>\n",
|
549 |
" <tr>\n",
|
550 |
" <th>3</th>\n",
|
|
|
553 |
" <td>Alaska</td>\n",
|
554 |
" <td>state</td>\n",
|
555 |
" <td>Alaska</td>\n",
|
556 |
+
" <td>1-Bedroom</td>\n",
|
557 |
+
" <td>all homes</td>\n",
|
558 |
" <td>2000-04-30</td>\n",
|
559 |
+
" <td>79799.206525</td>\n",
|
560 |
" <td>NaN</td>\n",
|
561 |
" <td>NaN</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
562 |
" </tr>\n",
|
563 |
" <tr>\n",
|
564 |
" <th>4</th>\n",
|
|
|
567 |
" <td>Alaska</td>\n",
|
568 |
" <td>state</td>\n",
|
569 |
" <td>Alaska</td>\n",
|
570 |
+
" <td>1-Bedroom</td>\n",
|
571 |
+
" <td>all homes</td>\n",
|
572 |
" <td>2000-05-31</td>\n",
|
573 |
+
" <td>79666.469861</td>\n",
|
574 |
" <td>NaN</td>\n",
|
575 |
" <td>NaN</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
" </tr>\n",
|
577 |
" <tr>\n",
|
578 |
" <th>...</th>\n",
|
|
|
587 |
" <td>...</td>\n",
|
588 |
" <td>...</td>\n",
|
589 |
" <td>...</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
590 |
" </tr>\n",
|
591 |
" <tr>\n",
|
592 |
" <th>117907</th>\n",
|
|
|
596 |
" <td>state</td>\n",
|
597 |
" <td>Wyoming</td>\n",
|
598 |
" <td>All Bedrooms</td>\n",
|
599 |
+
" <td>condo/co-op</td>\n",
|
600 |
" <td>2023-09-30</td>\n",
|
|
|
|
|
|
|
|
|
|
|
601 |
" <td>486974.735908</td>\n",
|
602 |
" <td>NaN</td>\n",
|
603 |
" <td>NaN</td>\n",
|
|
|
|
|
604 |
" </tr>\n",
|
605 |
" <tr>\n",
|
606 |
" <th>117908</th>\n",
|
|
|
610 |
" <td>state</td>\n",
|
611 |
" <td>Wyoming</td>\n",
|
612 |
" <td>All Bedrooms</td>\n",
|
613 |
+
" <td>condo/co-op</td>\n",
|
614 |
" <td>2023-10-31</td>\n",
|
|
|
|
|
|
|
|
|
|
|
615 |
" <td>485847.539614</td>\n",
|
616 |
" <td>NaN</td>\n",
|
617 |
" <td>NaN</td>\n",
|
|
|
|
|
618 |
" </tr>\n",
|
619 |
" <tr>\n",
|
620 |
" <th>117909</th>\n",
|
|
|
624 |
" <td>state</td>\n",
|
625 |
" <td>Wyoming</td>\n",
|
626 |
" <td>All Bedrooms</td>\n",
|
627 |
+
" <td>condo/co-op</td>\n",
|
628 |
" <td>2023-11-30</td>\n",
|
|
|
|
|
|
|
|
|
|
|
629 |
" <td>484223.885775</td>\n",
|
630 |
" <td>NaN</td>\n",
|
631 |
" <td>NaN</td>\n",
|
|
|
|
|
632 |
" </tr>\n",
|
633 |
" <tr>\n",
|
634 |
" <th>117910</th>\n",
|
|
|
638 |
" <td>state</td>\n",
|
639 |
" <td>Wyoming</td>\n",
|
640 |
" <td>All Bedrooms</td>\n",
|
641 |
+
" <td>condo/co-op</td>\n",
|
642 |
" <td>2023-12-31</td>\n",
|
|
|
|
|
|
|
|
|
|
|
643 |
" <td>481522.403338</td>\n",
|
644 |
" <td>NaN</td>\n",
|
645 |
" <td>NaN</td>\n",
|
|
|
|
|
646 |
" </tr>\n",
|
647 |
" <tr>\n",
|
648 |
" <th>117911</th>\n",
|
|
|
652 |
" <td>state</td>\n",
|
653 |
" <td>Wyoming</td>\n",
|
654 |
" <td>All Bedrooms</td>\n",
|
655 |
+
" <td>condo/co-op</td>\n",
|
656 |
" <td>2024-01-31</td>\n",
|
|
|
|
|
|
|
|
|
|
|
657 |
" <td>481181.718200</td>\n",
|
658 |
" <td>NaN</td>\n",
|
659 |
" <td>NaN</td>\n",
|
|
|
|
|
660 |
" </tr>\n",
|
661 |
" </tbody>\n",
|
662 |
"</table>\n",
|
663 |
+
"<p>117912 rows × 11 columns</p>\n",
|
664 |
"</div>"
|
665 |
],
|
666 |
"text/plain": [
|
667 |
" RegionID SizeRank RegionName RegionType StateName Bedroom Count \\\n",
|
668 |
+
"0 3 48 Alaska state Alaska 1-Bedroom \n",
|
669 |
+
"1 3 48 Alaska state Alaska 1-Bedroom \n",
|
670 |
+
"2 3 48 Alaska state Alaska 1-Bedroom \n",
|
671 |
+
"3 3 48 Alaska state Alaska 1-Bedroom \n",
|
672 |
+
"4 3 48 Alaska state Alaska 1-Bedroom \n",
|
673 |
"... ... ... ... ... ... ... \n",
|
674 |
"117907 62 51 Wyoming state Wyoming All Bedrooms \n",
|
675 |
"117908 62 51 Wyoming state Wyoming All Bedrooms \n",
|
|
|
677 |
"117910 62 51 Wyoming state Wyoming All Bedrooms \n",
|
678 |
"117911 62 51 Wyoming state Wyoming All Bedrooms \n",
|
679 |
"\n",
|
680 |
+
" Home Type Date \\\n",
|
681 |
+
"0 all homes 2000-01-31 \n",
|
682 |
+
"1 all homes 2000-02-29 \n",
|
683 |
+
"2 all homes 2000-03-31 \n",
|
684 |
+
"3 all homes 2000-04-30 \n",
|
685 |
+
"4 all homes 2000-05-31 \n",
|
686 |
+
"... ... ... \n",
|
687 |
+
"117907 condo/co-op 2023-09-30 \n",
|
688 |
+
"117908 condo/co-op 2023-10-31 \n",
|
689 |
+
"117909 condo/co-op 2023-11-30 \n",
|
690 |
+
"117910 condo/co-op 2023-12-31 \n",
|
691 |
+
"117911 condo/co-op 2024-01-31 \n",
|
692 |
"\n",
|
693 |
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
694 |
+
"0 81310.639504 \n",
|
695 |
+
"1 80419.761984 \n",
|
696 |
+
"2 80480.449461 \n",
|
697 |
+
"3 79799.206525 \n",
|
698 |
+
"4 79666.469861 \n",
|
699 |
"... ... \n",
|
700 |
+
"117907 486974.735908 \n",
|
701 |
+
"117908 485847.539614 \n",
|
702 |
+
"117909 484223.885775 \n",
|
703 |
+
"117910 481522.403338 \n",
|
704 |
+
"117911 481181.718200 \n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
705 |
"\n",
|
706 |
" Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
707 |
"0 NaN \n",
|
|
|
716 |
"117910 NaN \n",
|
717 |
"117911 NaN \n",
|
718 |
"\n",
|
719 |
+
" Top Tier ZHVI (Smoothed) (Seasonally Adjusted) \n",
|
720 |
+
"0 NaN \n",
|
721 |
+
"1 NaN \n",
|
722 |
+
"2 NaN \n",
|
723 |
+
"3 NaN \n",
|
724 |
+
"4 NaN \n",
|
725 |
+
"... ... \n",
|
726 |
+
"117907 NaN \n",
|
727 |
+
"117908 NaN \n",
|
728 |
+
"117909 NaN \n",
|
729 |
+
"117910 NaN \n",
|
730 |
+
"117911 NaN \n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
731 |
"\n",
|
732 |
+
"[117912 rows x 11 columns]"
|
733 |
]
|
734 |
},
|
735 |
+
"execution_count": 4,
|
736 |
"metadata": {},
|
737 |
"output_type": "execute_result"
|
738 |
}
|
|
|
763 |
},
|
764 |
{
|
765 |
"cell_type": "code",
|
766 |
+
"execution_count": 5,
|
767 |
"metadata": {},
|
768 |
"outputs": [
|
769 |
{
|
|
|
796 |
" <th>Home Type</th>\n",
|
797 |
" <th>Date</th>\n",
|
798 |
" <th>Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
|
|
|
|
799 |
" <th>Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
|
|
|
|
|
|
800 |
" <th>Top Tier ZHVI (Smoothed) (Seasonally Adjusted)</th>\n",
|
|
|
|
|
801 |
" </tr>\n",
|
802 |
" </thead>\n",
|
803 |
" <tbody>\n",
|
|
|
808 |
" <td>Alaska</td>\n",
|
809 |
" <td>state</td>\n",
|
810 |
" <td>Alaska</td>\n",
|
811 |
+
" <td>1-Bedroom</td>\n",
|
812 |
+
" <td>all homes</td>\n",
|
813 |
" <td>2000-01-31</td>\n",
|
814 |
+
" <td>81310.639504</td>\n",
|
815 |
" <td>NaN</td>\n",
|
816 |
" <td>NaN</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
817 |
" </tr>\n",
|
818 |
" <tr>\n",
|
819 |
" <th>1</th>\n",
|
|
|
822 |
" <td>Alaska</td>\n",
|
823 |
" <td>state</td>\n",
|
824 |
" <td>Alaska</td>\n",
|
825 |
+
" <td>1-Bedroom</td>\n",
|
826 |
+
" <td>all homes</td>\n",
|
827 |
" <td>2000-02-29</td>\n",
|
828 |
+
" <td>80419.761984</td>\n",
|
829 |
" <td>NaN</td>\n",
|
830 |
" <td>NaN</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
831 |
" </tr>\n",
|
832 |
" <tr>\n",
|
833 |
" <th>2</th>\n",
|
|
|
836 |
" <td>Alaska</td>\n",
|
837 |
" <td>state</td>\n",
|
838 |
" <td>Alaska</td>\n",
|
839 |
+
" <td>1-Bedroom</td>\n",
|
840 |
+
" <td>all homes</td>\n",
|
841 |
" <td>2000-03-31</td>\n",
|
842 |
+
" <td>80480.449461</td>\n",
|
843 |
" <td>NaN</td>\n",
|
844 |
" <td>NaN</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
845 |
" </tr>\n",
|
846 |
" <tr>\n",
|
847 |
" <th>3</th>\n",
|
|
|
850 |
" <td>Alaska</td>\n",
|
851 |
" <td>state</td>\n",
|
852 |
" <td>Alaska</td>\n",
|
853 |
+
" <td>1-Bedroom</td>\n",
|
854 |
+
" <td>all homes</td>\n",
|
855 |
" <td>2000-04-30</td>\n",
|
856 |
+
" <td>79799.206525</td>\n",
|
857 |
" <td>NaN</td>\n",
|
858 |
" <td>NaN</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
859 |
" </tr>\n",
|
860 |
" <tr>\n",
|
861 |
" <th>4</th>\n",
|
|
|
864 |
" <td>Alaska</td>\n",
|
865 |
" <td>state</td>\n",
|
866 |
" <td>Alaska</td>\n",
|
867 |
+
" <td>1-Bedroom</td>\n",
|
868 |
+
" <td>all homes</td>\n",
|
869 |
" <td>2000-05-31</td>\n",
|
870 |
+
" <td>79666.469861</td>\n",
|
871 |
" <td>NaN</td>\n",
|
872 |
" <td>NaN</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
873 |
" </tr>\n",
|
874 |
" <tr>\n",
|
875 |
" <th>...</th>\n",
|
|
|
884 |
" <td>...</td>\n",
|
885 |
" <td>...</td>\n",
|
886 |
" <td>...</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
887 |
" </tr>\n",
|
888 |
" <tr>\n",
|
889 |
" <th>117907</th>\n",
|
|
|
893 |
" <td>state</td>\n",
|
894 |
" <td>Wyoming</td>\n",
|
895 |
" <td>All Bedrooms</td>\n",
|
896 |
+
" <td>condo/co-op</td>\n",
|
897 |
" <td>2023-09-30</td>\n",
|
|
|
|
|
|
|
|
|
|
|
898 |
" <td>486974.735908</td>\n",
|
899 |
" <td>NaN</td>\n",
|
900 |
" <td>NaN</td>\n",
|
|
|
|
|
901 |
" </tr>\n",
|
902 |
" <tr>\n",
|
903 |
" <th>117908</th>\n",
|
|
|
907 |
" <td>state</td>\n",
|
908 |
" <td>Wyoming</td>\n",
|
909 |
" <td>All Bedrooms</td>\n",
|
910 |
+
" <td>condo/co-op</td>\n",
|
911 |
" <td>2023-10-31</td>\n",
|
|
|
|
|
|
|
|
|
|
|
912 |
" <td>485847.539614</td>\n",
|
913 |
" <td>NaN</td>\n",
|
914 |
" <td>NaN</td>\n",
|
|
|
|
|
915 |
" </tr>\n",
|
916 |
" <tr>\n",
|
917 |
" <th>117909</th>\n",
|
|
|
921 |
" <td>state</td>\n",
|
922 |
" <td>Wyoming</td>\n",
|
923 |
" <td>All Bedrooms</td>\n",
|
924 |
+
" <td>condo/co-op</td>\n",
|
925 |
" <td>2023-11-30</td>\n",
|
|
|
|
|
|
|
|
|
|
|
926 |
" <td>484223.885775</td>\n",
|
927 |
" <td>NaN</td>\n",
|
928 |
" <td>NaN</td>\n",
|
|
|
|
|
929 |
" </tr>\n",
|
930 |
" <tr>\n",
|
931 |
" <th>117910</th>\n",
|
|
|
935 |
" <td>state</td>\n",
|
936 |
" <td>Wyoming</td>\n",
|
937 |
" <td>All Bedrooms</td>\n",
|
938 |
+
" <td>condo/co-op</td>\n",
|
939 |
" <td>2023-12-31</td>\n",
|
|
|
|
|
|
|
|
|
|
|
940 |
" <td>481522.403338</td>\n",
|
941 |
" <td>NaN</td>\n",
|
942 |
" <td>NaN</td>\n",
|
|
|
|
|
943 |
" </tr>\n",
|
944 |
" <tr>\n",
|
945 |
" <th>117911</th>\n",
|
|
|
949 |
" <td>state</td>\n",
|
950 |
" <td>Wyoming</td>\n",
|
951 |
" <td>All Bedrooms</td>\n",
|
952 |
+
" <td>condo/co-op</td>\n",
|
953 |
" <td>2024-01-31</td>\n",
|
|
|
|
|
|
|
|
|
|
|
954 |
" <td>481181.718200</td>\n",
|
955 |
" <td>NaN</td>\n",
|
956 |
" <td>NaN</td>\n",
|
|
|
|
|
957 |
" </tr>\n",
|
958 |
" </tbody>\n",
|
959 |
"</table>\n",
|
960 |
+
"<p>117912 rows × 11 columns</p>\n",
|
961 |
"</div>"
|
962 |
],
|
963 |
"text/plain": [
|
964 |
" Region ID Size Rank Region Region Type State Bedroom Count \\\n",
|
965 |
+
"0 3 48 Alaska state Alaska 1-Bedroom \n",
|
966 |
+
"1 3 48 Alaska state Alaska 1-Bedroom \n",
|
967 |
+
"2 3 48 Alaska state Alaska 1-Bedroom \n",
|
968 |
+
"3 3 48 Alaska state Alaska 1-Bedroom \n",
|
969 |
+
"4 3 48 Alaska state Alaska 1-Bedroom \n",
|
970 |
"... ... ... ... ... ... ... \n",
|
971 |
"117907 62 51 Wyoming state Wyoming All Bedrooms \n",
|
972 |
"117908 62 51 Wyoming state Wyoming All Bedrooms \n",
|
|
|
974 |
"117910 62 51 Wyoming state Wyoming All Bedrooms \n",
|
975 |
"117911 62 51 Wyoming state Wyoming All Bedrooms \n",
|
976 |
"\n",
|
977 |
+
" Home Type Date \\\n",
|
978 |
+
"0 all homes 2000-01-31 \n",
|
979 |
+
"1 all homes 2000-02-29 \n",
|
980 |
+
"2 all homes 2000-03-31 \n",
|
981 |
+
"3 all homes 2000-04-30 \n",
|
982 |
+
"4 all homes 2000-05-31 \n",
|
983 |
+
"... ... ... \n",
|
984 |
+
"117907 condo/co-op 2023-09-30 \n",
|
985 |
+
"117908 condo/co-op 2023-10-31 \n",
|
986 |
+
"117909 condo/co-op 2023-11-30 \n",
|
987 |
+
"117910 condo/co-op 2023-12-31 \n",
|
988 |
+
"117911 condo/co-op 2024-01-31 \n",
|
989 |
"\n",
|
990 |
" Mid Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
991 |
+
"0 81310.639504 \n",
|
992 |
+
"1 80419.761984 \n",
|
993 |
+
"2 80480.449461 \n",
|
994 |
+
"3 79799.206525 \n",
|
995 |
+
"4 79666.469861 \n",
|
996 |
"... ... \n",
|
997 |
+
"117907 486974.735908 \n",
|
998 |
+
"117908 485847.539614 \n",
|
999 |
+
"117909 484223.885775 \n",
|
1000 |
+
"117910 481522.403338 \n",
|
1001 |
+
"117911 481181.718200 \n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1002 |
"\n",
|
1003 |
" Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted) \\\n",
|
1004 |
"0 NaN \n",
|
|
|
1013 |
"117910 NaN \n",
|
1014 |
"117911 NaN \n",
|
1015 |
"\n",
|
1016 |
+
" Top Tier ZHVI (Smoothed) (Seasonally Adjusted) \n",
|
1017 |
+
"0 NaN \n",
|
1018 |
+
"1 NaN \n",
|
1019 |
+
"2 NaN \n",
|
1020 |
+
"3 NaN \n",
|
1021 |
+
"4 NaN \n",
|
1022 |
+
"... ... \n",
|
1023 |
+
"117907 NaN \n",
|
1024 |
+
"117908 NaN \n",
|
1025 |
+
"117909 NaN \n",
|
1026 |
+
"117910 NaN \n",
|
1027 |
+
"117911 NaN \n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1028 |
"\n",
|
1029 |
+
"[117912 rows x 11 columns]"
|
1030 |
]
|
1031 |
},
|
1032 |
+
"execution_count": 5,
|
1033 |
"metadata": {},
|
1034 |
"output_type": "execute_result"
|
1035 |
}
|
processors/home_values_forecasts.ipynb
CHANGED
@@ -322,43 +322,43 @@
|
|
322 |
"31853 North Port-Sarasota-Bradenton, FL Sarasota County \n",
|
323 |
"\n",
|
324 |
" BaseDate Month Over Month % (Smoothed) (Seasonally Adjusted) \\\n",
|
325 |
-
"0 2023-12-31 NaN
|
326 |
-
"1 2023-12-31 NaN
|
327 |
-
"2 2023-12-31 0.4
|
328 |
-
"3 2023-12-31 0.2
|
329 |
-
"4 2023-12-31 NaN
|
330 |
-
"... ... ...
|
331 |
-
"31849 2023-12-31 NaN
|
332 |
-
"31850 2023-12-31 NaN
|
333 |
-
"31851 2023-12-31 NaN
|
334 |
-
"31852 2023-12-31 NaN
|
335 |
-
"31853 2023-12-31 NaN
|
336 |
"\n",
|
337 |
" Quarter Over Quarter % (Smoothed) (Seasonally Adjusted) \\\n",
|
338 |
-
"0 NaN
|
339 |
-
"1 NaN
|
340 |
-
"2 0.9
|
341 |
-
"3 0.7
|
342 |
-
"4 NaN
|
343 |
-
"... ...
|
344 |
-
"31849 NaN
|
345 |
-
"31850 NaN
|
346 |
-
"31851 NaN
|
347 |
-
"31852 NaN
|
348 |
-
"31853 NaN
|
349 |
"\n",
|
350 |
" Year Over Year % (Smoothed) (Seasonally Adjusted) Month Over Month % \\\n",
|
351 |
-
"0
|
352 |
-
"1
|
353 |
-
"2
|
354 |
-
"3
|
355 |
-
"4
|
356 |
-
"...
|
357 |
-
"31849
|
358 |
-
"31850
|
359 |
-
"31851
|
360 |
-
"31852
|
361 |
-
"31853
|
362 |
"\n",
|
363 |
" Quarter Over Quarter % Year Over Year % \n",
|
364 |
"0 -0.9 0.6 \n",
|
@@ -420,19 +420,336 @@
|
|
420 |
},
|
421 |
{
|
422 |
"cell_type": "code",
|
423 |
-
"execution_count":
|
424 |
"metadata": {},
|
425 |
"outputs": [
|
426 |
{
|
427 |
-
"
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
}
|
437 |
],
|
438 |
"source": [
|
|
|
322 |
"31853 North Port-Sarasota-Bradenton, FL Sarasota County \n",
|
323 |
"\n",
|
324 |
" BaseDate Month Over Month % (Smoothed) (Seasonally Adjusted) \\\n",
|
325 |
+
"0 2023-12-31 NaN \n",
|
326 |
+
"1 2023-12-31 NaN \n",
|
327 |
+
"2 2023-12-31 0.4 \n",
|
328 |
+
"3 2023-12-31 0.2 \n",
|
329 |
+
"4 2023-12-31 NaN \n",
|
330 |
+
"... ... ... \n",
|
331 |
+
"31849 2023-12-31 NaN \n",
|
332 |
+
"31850 2023-12-31 NaN \n",
|
333 |
+
"31851 2023-12-31 NaN \n",
|
334 |
+
"31852 2023-12-31 NaN \n",
|
335 |
+
"31853 2023-12-31 NaN \n",
|
336 |
"\n",
|
337 |
" Quarter Over Quarter % (Smoothed) (Seasonally Adjusted) \\\n",
|
338 |
+
"0 NaN \n",
|
339 |
+
"1 NaN \n",
|
340 |
+
"2 0.9 \n",
|
341 |
+
"3 0.7 \n",
|
342 |
+
"4 NaN \n",
|
343 |
+
"... ... \n",
|
344 |
+
"31849 NaN \n",
|
345 |
+
"31850 NaN \n",
|
346 |
+
"31851 NaN \n",
|
347 |
+
"31852 NaN \n",
|
348 |
+
"31853 NaN \n",
|
349 |
"\n",
|
350 |
" Year Over Year % (Smoothed) (Seasonally Adjusted) Month Over Month % \\\n",
|
351 |
+
"0 NaN -0.7 \n",
|
352 |
+
"1 NaN -0.7 \n",
|
353 |
+
"2 3.2 -0.6 \n",
|
354 |
+
"3 2.7 -0.6 \n",
|
355 |
+
"4 NaN -0.7 \n",
|
356 |
+
"... ... ... \n",
|
357 |
+
"31849 NaN -0.7 \n",
|
358 |
+
"31850 NaN -0.7 \n",
|
359 |
+
"31851 NaN -1.0 \n",
|
360 |
+
"31852 NaN -0.4 \n",
|
361 |
+
"31853 NaN -0.9 \n",
|
362 |
"\n",
|
363 |
" Quarter Over Quarter % Year Over Year % \n",
|
364 |
"0 -0.9 0.6 \n",
|
|
|
420 |
},
|
421 |
{
|
422 |
"cell_type": "code",
|
423 |
+
"execution_count": 4,
|
424 |
"metadata": {},
|
425 |
"outputs": [
|
426 |
{
|
427 |
+
"data": {
|
428 |
+
"text/html": [
|
429 |
+
"<div>\n",
|
430 |
+
"<style scoped>\n",
|
431 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
432 |
+
" vertical-align: middle;\n",
|
433 |
+
" }\n",
|
434 |
+
"\n",
|
435 |
+
" .dataframe tbody tr th {\n",
|
436 |
+
" vertical-align: top;\n",
|
437 |
+
" }\n",
|
438 |
+
"\n",
|
439 |
+
" .dataframe thead th {\n",
|
440 |
+
" text-align: right;\n",
|
441 |
+
" }\n",
|
442 |
+
"</style>\n",
|
443 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
444 |
+
" <thead>\n",
|
445 |
+
" <tr style=\"text-align: right;\">\n",
|
446 |
+
" <th></th>\n",
|
447 |
+
" <th>Region ID</th>\n",
|
448 |
+
" <th>Size Rank</th>\n",
|
449 |
+
" <th>Region</th>\n",
|
450 |
+
" <th>Region Type</th>\n",
|
451 |
+
" <th>State</th>\n",
|
452 |
+
" <th>City</th>\n",
|
453 |
+
" <th>Metro</th>\n",
|
454 |
+
" <th>County</th>\n",
|
455 |
+
" <th>Date</th>\n",
|
456 |
+
" <th>Month Over Month % (Smoothed) (Seasonally Adjusted)</th>\n",
|
457 |
+
" <th>Quarter Over Quarter % (Smoothed) (Seasonally Adjusted)</th>\n",
|
458 |
+
" <th>Year Over Year % (Smoothed) (Seasonally Adjusted)</th>\n",
|
459 |
+
" <th>Month Over Month %</th>\n",
|
460 |
+
" <th>Quarter Over Quarter %</th>\n",
|
461 |
+
" <th>Year Over Year %</th>\n",
|
462 |
+
" </tr>\n",
|
463 |
+
" </thead>\n",
|
464 |
+
" <tbody>\n",
|
465 |
+
" <tr>\n",
|
466 |
+
" <th>0</th>\n",
|
467 |
+
" <td>58001</td>\n",
|
468 |
+
" <td>30490</td>\n",
|
469 |
+
" <td>501</td>\n",
|
470 |
+
" <td>zip</td>\n",
|
471 |
+
" <td>NY</td>\n",
|
472 |
+
" <td>Holtsville</td>\n",
|
473 |
+
" <td>New York-Newark-Jersey City, NY-NJ-PA</td>\n",
|
474 |
+
" <td>Suffolk County</td>\n",
|
475 |
+
" <td>2023-12-31</td>\n",
|
476 |
+
" <td>NaN</td>\n",
|
477 |
+
" <td>NaN</td>\n",
|
478 |
+
" <td>NaN</td>\n",
|
479 |
+
" <td>-0.7</td>\n",
|
480 |
+
" <td>-0.9</td>\n",
|
481 |
+
" <td>0.6</td>\n",
|
482 |
+
" </tr>\n",
|
483 |
+
" <tr>\n",
|
484 |
+
" <th>1</th>\n",
|
485 |
+
" <td>58002</td>\n",
|
486 |
+
" <td>30490</td>\n",
|
487 |
+
" <td>544</td>\n",
|
488 |
+
" <td>zip</td>\n",
|
489 |
+
" <td>NY</td>\n",
|
490 |
+
" <td>Holtsville</td>\n",
|
491 |
+
" <td>New York-Newark-Jersey City, NY-NJ-PA</td>\n",
|
492 |
+
" <td>Suffolk County</td>\n",
|
493 |
+
" <td>2023-12-31</td>\n",
|
494 |
+
" <td>NaN</td>\n",
|
495 |
+
" <td>NaN</td>\n",
|
496 |
+
" <td>NaN</td>\n",
|
497 |
+
" <td>-0.7</td>\n",
|
498 |
+
" <td>-0.9</td>\n",
|
499 |
+
" <td>0.6</td>\n",
|
500 |
+
" </tr>\n",
|
501 |
+
" <tr>\n",
|
502 |
+
" <th>2</th>\n",
|
503 |
+
" <td>58196</td>\n",
|
504 |
+
" <td>7440</td>\n",
|
505 |
+
" <td>1001</td>\n",
|
506 |
+
" <td>zip</td>\n",
|
507 |
+
" <td>MA</td>\n",
|
508 |
+
" <td>Agawam</td>\n",
|
509 |
+
" <td>Springfield, MA</td>\n",
|
510 |
+
" <td>Hampden County</td>\n",
|
511 |
+
" <td>2023-12-31</td>\n",
|
512 |
+
" <td>0.4</td>\n",
|
513 |
+
" <td>0.9</td>\n",
|
514 |
+
" <td>3.2</td>\n",
|
515 |
+
" <td>-0.6</td>\n",
|
516 |
+
" <td>0.0</td>\n",
|
517 |
+
" <td>3.0</td>\n",
|
518 |
+
" </tr>\n",
|
519 |
+
" <tr>\n",
|
520 |
+
" <th>3</th>\n",
|
521 |
+
" <td>58197</td>\n",
|
522 |
+
" <td>3911</td>\n",
|
523 |
+
" <td>1002</td>\n",
|
524 |
+
" <td>zip</td>\n",
|
525 |
+
" <td>MA</td>\n",
|
526 |
+
" <td>Amherst</td>\n",
|
527 |
+
" <td>Springfield, MA</td>\n",
|
528 |
+
" <td>Hampshire County</td>\n",
|
529 |
+
" <td>2023-12-31</td>\n",
|
530 |
+
" <td>0.2</td>\n",
|
531 |
+
" <td>0.7</td>\n",
|
532 |
+
" <td>2.7</td>\n",
|
533 |
+
" <td>-0.6</td>\n",
|
534 |
+
" <td>0.0</td>\n",
|
535 |
+
" <td>2.9</td>\n",
|
536 |
+
" </tr>\n",
|
537 |
+
" <tr>\n",
|
538 |
+
" <th>4</th>\n",
|
539 |
+
" <td>58198</td>\n",
|
540 |
+
" <td>8838</td>\n",
|
541 |
+
" <td>1003</td>\n",
|
542 |
+
" <td>zip</td>\n",
|
543 |
+
" <td>MA</td>\n",
|
544 |
+
" <td>Amherst</td>\n",
|
545 |
+
" <td>Springfield, MA</td>\n",
|
546 |
+
" <td>Hampshire County</td>\n",
|
547 |
+
" <td>2023-12-31</td>\n",
|
548 |
+
" <td>NaN</td>\n",
|
549 |
+
" <td>NaN</td>\n",
|
550 |
+
" <td>NaN</td>\n",
|
551 |
+
" <td>-0.7</td>\n",
|
552 |
+
" <td>0.0</td>\n",
|
553 |
+
" <td>3.4</td>\n",
|
554 |
+
" </tr>\n",
|
555 |
+
" <tr>\n",
|
556 |
+
" <th>...</th>\n",
|
557 |
+
" <td>...</td>\n",
|
558 |
+
" <td>...</td>\n",
|
559 |
+
" <td>...</td>\n",
|
560 |
+
" <td>...</td>\n",
|
561 |
+
" <td>...</td>\n",
|
562 |
+
" <td>...</td>\n",
|
563 |
+
" <td>...</td>\n",
|
564 |
+
" <td>...</td>\n",
|
565 |
+
" <td>...</td>\n",
|
566 |
+
" <td>...</td>\n",
|
567 |
+
" <td>...</td>\n",
|
568 |
+
" <td>...</td>\n",
|
569 |
+
" <td>...</td>\n",
|
570 |
+
" <td>...</td>\n",
|
571 |
+
" <td>...</td>\n",
|
572 |
+
" </tr>\n",
|
573 |
+
" <tr>\n",
|
574 |
+
" <th>31849</th>\n",
|
575 |
+
" <td>827279</td>\n",
|
576 |
+
" <td>7779</td>\n",
|
577 |
+
" <td>72405</td>\n",
|
578 |
+
" <td>zip</td>\n",
|
579 |
+
" <td>AR</td>\n",
|
580 |
+
" <td>Jonesboro</td>\n",
|
581 |
+
" <td>Jonesboro, AR</td>\n",
|
582 |
+
" <td>Craighead County</td>\n",
|
583 |
+
" <td>2023-12-31</td>\n",
|
584 |
+
" <td>NaN</td>\n",
|
585 |
+
" <td>NaN</td>\n",
|
586 |
+
" <td>NaN</td>\n",
|
587 |
+
" <td>-0.7</td>\n",
|
588 |
+
" <td>0.0</td>\n",
|
589 |
+
" <td>2.5</td>\n",
|
590 |
+
" </tr>\n",
|
591 |
+
" <tr>\n",
|
592 |
+
" <th>31850</th>\n",
|
593 |
+
" <td>834213</td>\n",
|
594 |
+
" <td>30490</td>\n",
|
595 |
+
" <td>11437</td>\n",
|
596 |
+
" <td>zip</td>\n",
|
597 |
+
" <td>NY</td>\n",
|
598 |
+
" <td>New York</td>\n",
|
599 |
+
" <td>New York-Newark-Jersey City, NY-NJ-PA</td>\n",
|
600 |
+
" <td>Queens County</td>\n",
|
601 |
+
" <td>2023-12-31</td>\n",
|
602 |
+
" <td>NaN</td>\n",
|
603 |
+
" <td>NaN</td>\n",
|
604 |
+
" <td>NaN</td>\n",
|
605 |
+
" <td>-0.7</td>\n",
|
606 |
+
" <td>-0.9</td>\n",
|
607 |
+
" <td>0.6</td>\n",
|
608 |
+
" </tr>\n",
|
609 |
+
" <tr>\n",
|
610 |
+
" <th>31851</th>\n",
|
611 |
+
" <td>845914</td>\n",
|
612 |
+
" <td>6361</td>\n",
|
613 |
+
" <td>85288</td>\n",
|
614 |
+
" <td>zip</td>\n",
|
615 |
+
" <td>AZ</td>\n",
|
616 |
+
" <td>Tempe</td>\n",
|
617 |
+
" <td>Phoenix-Mesa-Chandler, AZ</td>\n",
|
618 |
+
" <td>Maricopa County</td>\n",
|
619 |
+
" <td>2023-12-31</td>\n",
|
620 |
+
" <td>NaN</td>\n",
|
621 |
+
" <td>NaN</td>\n",
|
622 |
+
" <td>NaN</td>\n",
|
623 |
+
" <td>-1.0</td>\n",
|
624 |
+
" <td>0.0</td>\n",
|
625 |
+
" <td>4.5</td>\n",
|
626 |
+
" </tr>\n",
|
627 |
+
" <tr>\n",
|
628 |
+
" <th>31852</th>\n",
|
629 |
+
" <td>847854</td>\n",
|
630 |
+
" <td>39992</td>\n",
|
631 |
+
" <td>20598</td>\n",
|
632 |
+
" <td>zip</td>\n",
|
633 |
+
" <td>VA</td>\n",
|
634 |
+
" <td>Arlington</td>\n",
|
635 |
+
" <td>Washington-Arlington-Alexandria, DC-VA-MD-WV</td>\n",
|
636 |
+
" <td>Arlington County</td>\n",
|
637 |
+
" <td>2023-12-31</td>\n",
|
638 |
+
" <td>NaN</td>\n",
|
639 |
+
" <td>NaN</td>\n",
|
640 |
+
" <td>NaN</td>\n",
|
641 |
+
" <td>-0.4</td>\n",
|
642 |
+
" <td>0.9</td>\n",
|
643 |
+
" <td>1.2</td>\n",
|
644 |
+
" </tr>\n",
|
645 |
+
" <tr>\n",
|
646 |
+
" <th>31853</th>\n",
|
647 |
+
" <td>847855</td>\n",
|
648 |
+
" <td>30490</td>\n",
|
649 |
+
" <td>34249</td>\n",
|
650 |
+
" <td>zip</td>\n",
|
651 |
+
" <td>FL</td>\n",
|
652 |
+
" <td>Sarasota</td>\n",
|
653 |
+
" <td>North Port-Sarasota-Bradenton, FL</td>\n",
|
654 |
+
" <td>Sarasota County</td>\n",
|
655 |
+
" <td>2023-12-31</td>\n",
|
656 |
+
" <td>NaN</td>\n",
|
657 |
+
" <td>NaN</td>\n",
|
658 |
+
" <td>NaN</td>\n",
|
659 |
+
" <td>-0.9</td>\n",
|
660 |
+
" <td>-0.1</td>\n",
|
661 |
+
" <td>5.4</td>\n",
|
662 |
+
" </tr>\n",
|
663 |
+
" </tbody>\n",
|
664 |
+
"</table>\n",
|
665 |
+
"<p>31854 rows × 15 columns</p>\n",
|
666 |
+
"</div>"
|
667 |
+
],
|
668 |
+
"text/plain": [
|
669 |
+
" Region ID Size Rank Region Region Type State City \\\n",
|
670 |
+
"0 58001 30490 501 zip NY Holtsville \n",
|
671 |
+
"1 58002 30490 544 zip NY Holtsville \n",
|
672 |
+
"2 58196 7440 1001 zip MA Agawam \n",
|
673 |
+
"3 58197 3911 1002 zip MA Amherst \n",
|
674 |
+
"4 58198 8838 1003 zip MA Amherst \n",
|
675 |
+
"... ... ... ... ... ... ... \n",
|
676 |
+
"31849 827279 7779 72405 zip AR Jonesboro \n",
|
677 |
+
"31850 834213 30490 11437 zip NY New York \n",
|
678 |
+
"31851 845914 6361 85288 zip AZ Tempe \n",
|
679 |
+
"31852 847854 39992 20598 zip VA Arlington \n",
|
680 |
+
"31853 847855 30490 34249 zip FL Sarasota \n",
|
681 |
+
"\n",
|
682 |
+
" Metro County \\\n",
|
683 |
+
"0 New York-Newark-Jersey City, NY-NJ-PA Suffolk County \n",
|
684 |
+
"1 New York-Newark-Jersey City, NY-NJ-PA Suffolk County \n",
|
685 |
+
"2 Springfield, MA Hampden County \n",
|
686 |
+
"3 Springfield, MA Hampshire County \n",
|
687 |
+
"4 Springfield, MA Hampshire County \n",
|
688 |
+
"... ... ... \n",
|
689 |
+
"31849 Jonesboro, AR Craighead County \n",
|
690 |
+
"31850 New York-Newark-Jersey City, NY-NJ-PA Queens County \n",
|
691 |
+
"31851 Phoenix-Mesa-Chandler, AZ Maricopa County \n",
|
692 |
+
"31852 Washington-Arlington-Alexandria, DC-VA-MD-WV Arlington County \n",
|
693 |
+
"31853 North Port-Sarasota-Bradenton, FL Sarasota County \n",
|
694 |
+
"\n",
|
695 |
+
" Date Month Over Month % (Smoothed) (Seasonally Adjusted) \\\n",
|
696 |
+
"0 2023-12-31 NaN \n",
|
697 |
+
"1 2023-12-31 NaN \n",
|
698 |
+
"2 2023-12-31 0.4 \n",
|
699 |
+
"3 2023-12-31 0.2 \n",
|
700 |
+
"4 2023-12-31 NaN \n",
|
701 |
+
"... ... ... \n",
|
702 |
+
"31849 2023-12-31 NaN \n",
|
703 |
+
"31850 2023-12-31 NaN \n",
|
704 |
+
"31851 2023-12-31 NaN \n",
|
705 |
+
"31852 2023-12-31 NaN \n",
|
706 |
+
"31853 2023-12-31 NaN \n",
|
707 |
+
"\n",
|
708 |
+
" Quarter Over Quarter % (Smoothed) (Seasonally Adjusted) \\\n",
|
709 |
+
"0 NaN \n",
|
710 |
+
"1 NaN \n",
|
711 |
+
"2 0.9 \n",
|
712 |
+
"3 0.7 \n",
|
713 |
+
"4 NaN \n",
|
714 |
+
"... ... \n",
|
715 |
+
"31849 NaN \n",
|
716 |
+
"31850 NaN \n",
|
717 |
+
"31851 NaN \n",
|
718 |
+
"31852 NaN \n",
|
719 |
+
"31853 NaN \n",
|
720 |
+
"\n",
|
721 |
+
" Year Over Year % (Smoothed) (Seasonally Adjusted) Month Over Month % \\\n",
|
722 |
+
"0 NaN -0.7 \n",
|
723 |
+
"1 NaN -0.7 \n",
|
724 |
+
"2 3.2 -0.6 \n",
|
725 |
+
"3 2.7 -0.6 \n",
|
726 |
+
"4 NaN -0.7 \n",
|
727 |
+
"... ... ... \n",
|
728 |
+
"31849 NaN -0.7 \n",
|
729 |
+
"31850 NaN -0.7 \n",
|
730 |
+
"31851 NaN -1.0 \n",
|
731 |
+
"31852 NaN -0.4 \n",
|
732 |
+
"31853 NaN -0.9 \n",
|
733 |
+
"\n",
|
734 |
+
" Quarter Over Quarter % Year Over Year % \n",
|
735 |
+
"0 -0.9 0.6 \n",
|
736 |
+
"1 -0.9 0.6 \n",
|
737 |
+
"2 0.0 3.0 \n",
|
738 |
+
"3 0.0 2.9 \n",
|
739 |
+
"4 0.0 3.4 \n",
|
740 |
+
"... ... ... \n",
|
741 |
+
"31849 0.0 2.5 \n",
|
742 |
+
"31850 -0.9 0.6 \n",
|
743 |
+
"31851 0.0 4.5 \n",
|
744 |
+
"31852 0.9 1.2 \n",
|
745 |
+
"31853 -0.1 5.4 \n",
|
746 |
+
"\n",
|
747 |
+
"[31854 rows x 15 columns]"
|
748 |
+
]
|
749 |
+
},
|
750 |
+
"execution_count": 4,
|
751 |
+
"metadata": {},
|
752 |
+
"output_type": "execute_result"
|
753 |
}
|
754 |
],
|
755 |
"source": [
|
processors/new_construction.ipynb
CHANGED
@@ -514,18 +514,18 @@
|
|
514 |
"49485 845162 535 Granbury, TX msa TX all homes \n",
|
515 |
"49486 845162 535 Granbury, TX msa TX all homes \n",
|
516 |
"\n",
|
517 |
-
"
|
518 |
-
"0
|
519 |
-
"1
|
520 |
-
"2
|
521 |
-
"3
|
522 |
-
"4
|
523 |
-
"...
|
524 |
-
"49482
|
525 |
-
"49483
|
526 |
-
"49484
|
527 |
-
"49485
|
528 |
-
"49486
|
529 |
"\n",
|
530 |
"[49487 rows x 10 columns]"
|
531 |
]
|
|
|
514 |
"49485 845162 535 Granbury, TX msa TX all homes \n",
|
515 |
"49486 845162 535 Granbury, TX msa TX all homes \n",
|
516 |
"\n",
|
517 |
+
" Date Sales Count Median Sale Price per Sqft Median Sale Price \n",
|
518 |
+
"0 2018-01-31 33940.0 137.412316 309000.0 \n",
|
519 |
+
"1 2018-02-28 33304.0 137.199170 309072.5 \n",
|
520 |
+
"2 2018-03-31 42641.0 139.520863 315488.0 \n",
|
521 |
+
"3 2018-04-30 37588.0 139.778110 314990.0 \n",
|
522 |
+
"4 2018-05-31 39933.0 143.317968 324500.0 \n",
|
523 |
+
"... ... ... ... ... \n",
|
524 |
+
"49482 2023-07-31 31.0 NaN NaN \n",
|
525 |
+
"49483 2023-08-31 33.0 NaN NaN \n",
|
526 |
+
"49484 2023-09-30 26.0 NaN NaN \n",
|
527 |
+
"49485 2023-10-31 24.0 NaN NaN \n",
|
528 |
+
"49486 2023-11-30 16.0 NaN NaN \n",
|
529 |
"\n",
|
530 |
"[49487 rows x 10 columns]"
|
531 |
]
|
processors/rentals.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -19,7 +19,7 @@
|
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
-
"execution_count":
|
23 |
"metadata": {},
|
24 |
"outputs": [],
|
25 |
"source": [
|
@@ -32,7 +32,7 @@
|
|
32 |
},
|
33 |
{
|
34 |
"cell_type": "code",
|
35 |
-
"execution_count":
|
36 |
"metadata": {},
|
37 |
"outputs": [
|
38 |
{
|
@@ -346,7 +346,7 @@
|
|
346 |
"[1258740 rows x 15 columns]"
|
347 |
]
|
348 |
},
|
349 |
-
"execution_count":
|
350 |
"metadata": {},
|
351 |
"output_type": "execute_result"
|
352 |
}
|
@@ -438,7 +438,7 @@
|
|
438 |
},
|
439 |
{
|
440 |
"cell_type": "code",
|
441 |
-
"execution_count":
|
442 |
"metadata": {},
|
443 |
"outputs": [
|
444 |
{
|
@@ -740,7 +740,7 @@
|
|
740 |
"[1258740 rows x 14 columns]"
|
741 |
]
|
742 |
},
|
743 |
-
"execution_count":
|
744 |
"metadata": {},
|
745 |
"output_type": "execute_result"
|
746 |
}
|
@@ -764,7 +764,7 @@
|
|
764 |
},
|
765 |
{
|
766 |
"cell_type": "code",
|
767 |
-
"execution_count":
|
768 |
"metadata": {},
|
769 |
"outputs": [
|
770 |
{
|
@@ -915,7 +915,7 @@
|
|
915 |
" <td>city</td>\n",
|
916 |
" <td>all homes plus multifamily</td>\n",
|
917 |
" <td>Camden County</td>\n",
|
918 |
-
" <td>
|
919 |
" <td>NaN</td>\n",
|
920 |
" <td>NaN</td>\n",
|
921 |
" <td>2023-08-31</td>\n",
|
@@ -932,7 +932,7 @@
|
|
932 |
" <td>city</td>\n",
|
933 |
" <td>all homes plus multifamily</td>\n",
|
934 |
" <td>Camden County</td>\n",
|
935 |
-
" <td>
|
936 |
" <td>NaN</td>\n",
|
937 |
" <td>NaN</td>\n",
|
938 |
" <td>2023-09-30</td>\n",
|
@@ -949,7 +949,7 @@
|
|
949 |
" <td>city</td>\n",
|
950 |
" <td>all homes plus multifamily</td>\n",
|
951 |
" <td>Camden County</td>\n",
|
952 |
-
" <td>
|
953 |
" <td>NaN</td>\n",
|
954 |
" <td>NaN</td>\n",
|
955 |
" <td>2023-10-31</td>\n",
|
@@ -966,7 +966,7 @@
|
|
966 |
" <td>city</td>\n",
|
967 |
" <td>all homes plus multifamily</td>\n",
|
968 |
" <td>Camden County</td>\n",
|
969 |
-
" <td>
|
970 |
" <td>NaN</td>\n",
|
971 |
" <td>NaN</td>\n",
|
972 |
" <td>2023-11-30</td>\n",
|
@@ -983,7 +983,7 @@
|
|
983 |
" <td>city</td>\n",
|
984 |
" <td>all homes plus multifamily</td>\n",
|
985 |
" <td>Camden County</td>\n",
|
986 |
-
" <td>
|
987 |
" <td>NaN</td>\n",
|
988 |
" <td>NaN</td>\n",
|
989 |
" <td>2023-12-31</td>\n",
|
@@ -1011,31 +1011,44 @@
|
|
1011 |
"1258738 857850 713 Cherry Hill city \n",
|
1012 |
"1258739 857850 713 Cherry Hill city \n",
|
1013 |
"\n",
|
1014 |
-
" Home Type State
|
1015 |
-
"0 all homes plus multifamily Ada County
|
1016 |
-
"1 all homes plus multifamily Ada County
|
1017 |
-
"2 all homes plus multifamily Ada County
|
1018 |
-
"3 all homes plus multifamily Ada County
|
1019 |
-
"4 all homes plus multifamily Ada County
|
1020 |
-
"... ... ...
|
1021 |
-
"1258735 all homes plus multifamily Camden County
|
1022 |
-
"1258736 all homes plus multifamily Camden County
|
1023 |
-
"1258737 all homes plus multifamily Camden County
|
1024 |
-
"1258738 all homes plus multifamily Camden County
|
1025 |
-
"1258739 all homes plus multifamily Camden County
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1026 |
"\n",
|
1027 |
-
"
|
1028 |
-
"0
|
1029 |
-
"1
|
1030 |
-
"2
|
1031 |
-
"3
|
1032 |
-
"4
|
1033 |
-
"...
|
1034 |
-
"1258735
|
1035 |
-
"1258736
|
1036 |
-
"1258737
|
1037 |
-
"1258738
|
1038 |
-
"1258739
|
1039 |
"\n",
|
1040 |
" Rent (Smoothed) (Seasonally Adjusted) City County \n",
|
1041 |
"0 927.493763 NaN Ada County \n",
|
@@ -1053,7 +1066,7 @@
|
|
1053 |
"[1258740 rows x 14 columns]"
|
1054 |
]
|
1055 |
},
|
1056 |
-
"execution_count":
|
1057 |
"metadata": {},
|
1058 |
"output_type": "execute_result"
|
1059 |
}
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
+
"execution_count": 2,
|
23 |
"metadata": {},
|
24 |
"outputs": [],
|
25 |
"source": [
|
|
|
32 |
},
|
33 |
{
|
34 |
"cell_type": "code",
|
35 |
+
"execution_count": 3,
|
36 |
"metadata": {},
|
37 |
"outputs": [
|
38 |
{
|
|
|
346 |
"[1258740 rows x 15 columns]"
|
347 |
]
|
348 |
},
|
349 |
+
"execution_count": 3,
|
350 |
"metadata": {},
|
351 |
"output_type": "execute_result"
|
352 |
}
|
|
|
438 |
},
|
439 |
{
|
440 |
"cell_type": "code",
|
441 |
+
"execution_count": 4,
|
442 |
"metadata": {},
|
443 |
"outputs": [
|
444 |
{
|
|
|
740 |
"[1258740 rows x 14 columns]"
|
741 |
]
|
742 |
},
|
743 |
+
"execution_count": 4,
|
744 |
"metadata": {},
|
745 |
"output_type": "execute_result"
|
746 |
}
|
|
|
764 |
},
|
765 |
{
|
766 |
"cell_type": "code",
|
767 |
+
"execution_count": 5,
|
768 |
"metadata": {},
|
769 |
"outputs": [
|
770 |
{
|
|
|
915 |
" <td>city</td>\n",
|
916 |
" <td>all homes plus multifamily</td>\n",
|
917 |
" <td>Camden County</td>\n",
|
918 |
+
" <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
|
919 |
" <td>NaN</td>\n",
|
920 |
" <td>NaN</td>\n",
|
921 |
" <td>2023-08-31</td>\n",
|
|
|
932 |
" <td>city</td>\n",
|
933 |
" <td>all homes plus multifamily</td>\n",
|
934 |
" <td>Camden County</td>\n",
|
935 |
+
" <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
|
936 |
" <td>NaN</td>\n",
|
937 |
" <td>NaN</td>\n",
|
938 |
" <td>2023-09-30</td>\n",
|
|
|
949 |
" <td>city</td>\n",
|
950 |
" <td>all homes plus multifamily</td>\n",
|
951 |
" <td>Camden County</td>\n",
|
952 |
+
" <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
|
953 |
" <td>NaN</td>\n",
|
954 |
" <td>NaN</td>\n",
|
955 |
" <td>2023-10-31</td>\n",
|
|
|
966 |
" <td>city</td>\n",
|
967 |
" <td>all homes plus multifamily</td>\n",
|
968 |
" <td>Camden County</td>\n",
|
969 |
+
" <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
|
970 |
" <td>NaN</td>\n",
|
971 |
" <td>NaN</td>\n",
|
972 |
" <td>2023-11-30</td>\n",
|
|
|
983 |
" <td>city</td>\n",
|
984 |
" <td>all homes plus multifamily</td>\n",
|
985 |
" <td>Camden County</td>\n",
|
986 |
+
" <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
|
987 |
" <td>NaN</td>\n",
|
988 |
" <td>NaN</td>\n",
|
989 |
" <td>2023-12-31</td>\n",
|
|
|
1011 |
"1258738 857850 713 Cherry Hill city \n",
|
1012 |
"1258739 857850 713 Cherry Hill city \n",
|
1013 |
"\n",
|
1014 |
+
" Home Type State \\\n",
|
1015 |
+
"0 all homes plus multifamily Ada County \n",
|
1016 |
+
"1 all homes plus multifamily Ada County \n",
|
1017 |
+
"2 all homes plus multifamily Ada County \n",
|
1018 |
+
"3 all homes plus multifamily Ada County \n",
|
1019 |
+
"4 all homes plus multifamily Ada County \n",
|
1020 |
+
"... ... ... \n",
|
1021 |
+
"1258735 all homes plus multifamily Camden County \n",
|
1022 |
+
"1258736 all homes plus multifamily Camden County \n",
|
1023 |
+
"1258737 all homes plus multifamily Camden County \n",
|
1024 |
+
"1258738 all homes plus multifamily Camden County \n",
|
1025 |
+
"1258739 all homes plus multifamily Camden County \n",
|
1026 |
+
"\n",
|
1027 |
+
" Metro State Code FIPS \\\n",
|
1028 |
+
"0 Boise City, ID 16.0 \n",
|
1029 |
+
"1 Boise City, ID 16.0 \n",
|
1030 |
+
"2 Boise City, ID 16.0 \n",
|
1031 |
+
"3 Boise City, ID 16.0 \n",
|
1032 |
+
"4 Boise City, ID 16.0 \n",
|
1033 |
+
"... ... ... \n",
|
1034 |
+
"1258735 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
|
1035 |
+
"1258736 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
|
1036 |
+
"1258737 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
|
1037 |
+
"1258738 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
|
1038 |
+
"1258739 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
|
1039 |
"\n",
|
1040 |
+
" Municipal Code FIPS Date Rent (Smoothed) \\\n",
|
1041 |
+
"0 1.0 2015-01-31 927.493763 \n",
|
1042 |
+
"1 1.0 2015-02-28 931.690623 \n",
|
1043 |
+
"2 1.0 2015-03-31 932.568601 \n",
|
1044 |
+
"3 1.0 2015-04-30 933.148134 \n",
|
1045 |
+
"4 1.0 2015-05-31 941.045724 \n",
|
1046 |
+
"... ... ... ... \n",
|
1047 |
+
"1258735 NaN 2023-08-31 2291.604800 \n",
|
1048 |
+
"1258736 NaN 2023-09-30 2296.188906 \n",
|
1049 |
+
"1258737 NaN 2023-10-31 2292.270938 \n",
|
1050 |
+
"1258738 NaN 2023-11-30 2253.417140 \n",
|
1051 |
+
"1258739 NaN 2023-12-31 2280.830303 \n",
|
1052 |
"\n",
|
1053 |
" Rent (Smoothed) (Seasonally Adjusted) City County \n",
|
1054 |
"0 927.493763 NaN Ada County \n",
|
|
|
1066 |
"[1258740 rows x 14 columns]"
|
1067 |
]
|
1068 |
},
|
1069 |
+
"execution_count": 5,
|
1070 |
"metadata": {},
|
1071 |
"output_type": "execute_result"
|
1072 |
}
|
processors/sales.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -19,7 +19,7 @@
|
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
-
"execution_count":
|
23 |
"metadata": {},
|
24 |
"outputs": [],
|
25 |
"source": [
|
@@ -32,7 +32,7 @@
|
|
32 |
},
|
33 |
{
|
34 |
"cell_type": "code",
|
35 |
-
"execution_count":
|
36 |
"metadata": {},
|
37 |
"outputs": [
|
38 |
{
|
@@ -442,7 +442,7 @@
|
|
442 |
"[255024 rows x 18 columns]"
|
443 |
]
|
444 |
},
|
445 |
-
"execution_count":
|
446 |
"metadata": {},
|
447 |
"output_type": "execute_result"
|
448 |
}
|
@@ -502,7 +502,7 @@
|
|
502 |
},
|
503 |
{
|
504 |
"cell_type": "code",
|
505 |
-
"execution_count":
|
506 |
"metadata": {},
|
507 |
"outputs": [
|
508 |
{
|
@@ -878,7 +878,7 @@
|
|
878 |
"[255024 rows x 18 columns]"
|
879 |
]
|
880 |
},
|
881 |
-
"execution_count":
|
882 |
"metadata": {},
|
883 |
"output_type": "execute_result"
|
884 |
}
|
@@ -901,7 +901,7 @@
|
|
901 |
},
|
902 |
{
|
903 |
"cell_type": "code",
|
904 |
-
"execution_count":
|
905 |
"metadata": {},
|
906 |
"outputs": [
|
907 |
{
|
@@ -1277,7 +1277,7 @@
|
|
1277 |
"[255024 rows x 18 columns]"
|
1278 |
]
|
1279 |
},
|
1280 |
-
"execution_count":
|
1281 |
"metadata": {},
|
1282 |
"output_type": "execute_result"
|
1283 |
}
|
@@ -1290,7 +1290,7 @@
|
|
1290 |
},
|
1291 |
{
|
1292 |
"cell_type": "code",
|
1293 |
-
"execution_count":
|
1294 |
"metadata": {},
|
1295 |
"outputs": [],
|
1296 |
"source": [
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
+
"execution_count": 2,
|
23 |
"metadata": {},
|
24 |
"outputs": [],
|
25 |
"source": [
|
|
|
32 |
},
|
33 |
{
|
34 |
"cell_type": "code",
|
35 |
+
"execution_count": 3,
|
36 |
"metadata": {},
|
37 |
"outputs": [
|
38 |
{
|
|
|
442 |
"[255024 rows x 18 columns]"
|
443 |
]
|
444 |
},
|
445 |
+
"execution_count": 3,
|
446 |
"metadata": {},
|
447 |
"output_type": "execute_result"
|
448 |
}
|
|
|
502 |
},
|
503 |
{
|
504 |
"cell_type": "code",
|
505 |
+
"execution_count": 4,
|
506 |
"metadata": {},
|
507 |
"outputs": [
|
508 |
{
|
|
|
878 |
"[255024 rows x 18 columns]"
|
879 |
]
|
880 |
},
|
881 |
+
"execution_count": 4,
|
882 |
"metadata": {},
|
883 |
"output_type": "execute_result"
|
884 |
}
|
|
|
901 |
},
|
902 |
{
|
903 |
"cell_type": "code",
|
904 |
+
"execution_count": 5,
|
905 |
"metadata": {},
|
906 |
"outputs": [
|
907 |
{
|
|
|
1277 |
"[255024 rows x 18 columns]"
|
1278 |
]
|
1279 |
},
|
1280 |
+
"execution_count": 5,
|
1281 |
"metadata": {},
|
1282 |
"output_type": "execute_result"
|
1283 |
}
|
|
|
1290 |
},
|
1291 |
{
|
1292 |
"cell_type": "code",
|
1293 |
+
"execution_count": 6,
|
1294 |
"metadata": {},
|
1295 |
"outputs": [],
|
1296 |
"source": [
|
test-sales.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:089f3958ace720a88adc9f6ea28689c9d8dd27a972b78a21a0883874cae8719d
|
3 |
+
size 7524442
|
zillow.py
CHANGED
@@ -35,6 +35,16 @@ _HOMEPAGE = "https://www.zillow.com/research/data/"
|
|
35 |
|
36 |
_LICENSE = "other"
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
class Zillow(datasets.GeneratorBasedBuilder):
|
40 |
"""Housing data in the United States provided by Zillow"""
|
@@ -89,13 +99,13 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
89 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
90 |
"Region": datasets.Value(dtype="string", id="Region"),
|
91 |
"Region Type": datasets.ClassLabel(
|
92 |
-
num_classes=
|
93 |
),
|
94 |
"State": datasets.Value(dtype="string", id="State"),
|
95 |
"City": datasets.Value(dtype="string", id="City"),
|
96 |
"Metro": datasets.Value(dtype="string", id="Metro"),
|
97 |
"County": datasets.Value(dtype="string", id="County"),
|
98 |
-
"Date": datasets.Value(dtype="
|
99 |
"Month Over Month % (Smoothed) (Seasonally Adjusted)": datasets.Value(
|
100 |
dtype="float32",
|
101 |
id="Month Over Month % (Smoothed) (Seasonally Adjusted)",
|
@@ -126,13 +136,13 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
126 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
127 |
"Region": datasets.Value(dtype="string", id="Region"),
|
128 |
"Region Type": datasets.ClassLabel(
|
129 |
-
num_classes=
|
130 |
),
|
131 |
"State": datasets.Value(dtype="string", id="State"),
|
132 |
"Home Type": datasets.ClassLabel(
|
133 |
-
num_classes=
|
134 |
),
|
135 |
-
"Date": datasets.Value(dtype="
|
136 |
"Median Sale Price": datasets.Value(
|
137 |
dtype="float32", id="Median Sale Price"
|
138 |
),
|
@@ -149,13 +159,13 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
149 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
150 |
"Region": datasets.Value(dtype="string", id="Region"),
|
151 |
"Region Type": datasets.ClassLabel(
|
152 |
-
num_classes=
|
153 |
),
|
154 |
"State": datasets.Value(dtype="string", id="State"),
|
155 |
"Home Type": datasets.ClassLabel(
|
156 |
-
num_classes=
|
157 |
),
|
158 |
-
"Date": datasets.Value(dtype="
|
159 |
"Median Listing Price": datasets.Value(
|
160 |
dtype="float32", id="Median Listing Price"
|
161 |
),
|
@@ -179,14 +189,13 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
179 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
180 |
"Region": datasets.Value(dtype="string", id="Region"),
|
181 |
"Region Type": datasets.ClassLabel(
|
182 |
-
num_classes=
|
183 |
),
|
184 |
"State": datasets.Value(dtype="string", id="State"),
|
185 |
"Home Type": datasets.ClassLabel(
|
186 |
-
num_classes=
|
187 |
-
names=["all homes plus multifamily", "SFR", "multifamily"],
|
188 |
),
|
189 |
-
"Date": datasets.Value(dtype="
|
190 |
"Rent (Smoothed)": datasets.Value(
|
191 |
dtype="float32", id="Rent (Smoothed)"
|
192 |
),
|
@@ -202,12 +211,11 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
202 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
203 |
"Region": datasets.Value(dtype="string", id="Region"),
|
204 |
"Region Type": datasets.ClassLabel(
|
205 |
-
num_classes=
|
206 |
),
|
207 |
"State": datasets.Value(dtype="string", id="State"),
|
208 |
"Home Type": datasets.ClassLabel(
|
209 |
-
num_classes=
|
210 |
-
names=["SFR", "all homes"],
|
211 |
),
|
212 |
"Date": datasets.Value(dtype="timestamp[ms]", id="Date"),
|
213 |
"Mean Sale to List Ratio (Smoothed)": datasets.Value(
|
@@ -252,10 +260,12 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
252 |
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
253 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
254 |
"Region": datasets.Value(dtype="string", id="Region"),
|
255 |
-
"Region Type": datasets.ClassLabel(
|
|
|
|
|
256 |
"State": datasets.Value(dtype="string", id="State"),
|
257 |
"Home Type": datasets.ClassLabel(
|
258 |
-
num_classes=
|
259 |
),
|
260 |
"Bedroom Count": datasets.ClassLabel(
|
261 |
num_classes=6,
|
@@ -268,7 +278,7 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
268 |
"All Bedrooms",
|
269 |
],
|
270 |
),
|
271 |
-
"Date": datasets.Value(dtype="
|
272 |
"Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)": datasets.Value(
|
273 |
dtype="float32",
|
274 |
id="Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)",
|
@@ -289,16 +299,14 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
289 |
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
290 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
291 |
"Region": datasets.Value(dtype="string", id="Region"),
|
292 |
-
# "Region Type": datasets.Value(dtype="string", id="Region Type"),
|
293 |
"Region Type": datasets.ClassLabel(
|
294 |
-
num_classes=
|
295 |
),
|
296 |
"State": datasets.Value(dtype="string", id="State"),
|
297 |
-
# "Home Type": datasets.Value(dtype="string", id="Home Type"),
|
298 |
"Home Type": datasets.ClassLabel(
|
299 |
-
num_classes=
|
300 |
),
|
301 |
-
"Date": datasets.Value(dtype="
|
302 |
"Mean Listings Price Cut Amount (Smoothed)": datasets.Value(
|
303 |
dtype="float32", id="Mean Listings Price Cut Amount (Smoothed)"
|
304 |
),
|
@@ -336,7 +344,7 @@ class Zillow(datasets.GeneratorBasedBuilder):
|
|
336 |
)
|
337 |
|
338 |
def _split_generators(self, dl_manager):
|
339 |
-
file_path = os.path.join("processed", self.config.name, "
|
340 |
file_train = dl_manager.download(file_path)
|
341 |
# file_test = dl_manager.download(os.path.join(self.config.name, "test.csv"))
|
342 |
# file_eval = dl_manager.download(os.path.join(self.config.name, "valid.csv"))
|
|
|
35 |
|
36 |
_LICENSE = "other"
|
37 |
|
38 |
+
HOME_TYPES = [
|
39 |
+
"all homes",
|
40 |
+
"all homes plus multifamily",
|
41 |
+
"SFR",
|
42 |
+
"condo/co-op",
|
43 |
+
"multifamily",
|
44 |
+
]
|
45 |
+
|
46 |
+
REGION_TYPES = ["county", "city", "zip", "country", "msa"]
|
47 |
+
|
48 |
|
49 |
class Zillow(datasets.GeneratorBasedBuilder):
|
50 |
"""Housing data in the United States provided by Zillow"""
|
|
|
99 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
100 |
"Region": datasets.Value(dtype="string", id="Region"),
|
101 |
"Region Type": datasets.ClassLabel(
|
102 |
+
num_classes=len(REGION_TYPES), names=REGION_TYPES
|
103 |
),
|
104 |
"State": datasets.Value(dtype="string", id="State"),
|
105 |
"City": datasets.Value(dtype="string", id="City"),
|
106 |
"Metro": datasets.Value(dtype="string", id="Metro"),
|
107 |
"County": datasets.Value(dtype="string", id="County"),
|
108 |
+
"Date": datasets.Value(dtype="timestamp[ms]", id="Date"),
|
109 |
"Month Over Month % (Smoothed) (Seasonally Adjusted)": datasets.Value(
|
110 |
dtype="float32",
|
111 |
id="Month Over Month % (Smoothed) (Seasonally Adjusted)",
|
|
|
136 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
137 |
"Region": datasets.Value(dtype="string", id="Region"),
|
138 |
"Region Type": datasets.ClassLabel(
|
139 |
+
num_classes=len(REGION_TYPES), names=REGION_TYPES
|
140 |
),
|
141 |
"State": datasets.Value(dtype="string", id="State"),
|
142 |
"Home Type": datasets.ClassLabel(
|
143 |
+
num_classes=len(HOME_TYPES), names=HOME_TYPES
|
144 |
),
|
145 |
+
"Date": datasets.Value(dtype="timestamp[ms]", id="Date"),
|
146 |
"Median Sale Price": datasets.Value(
|
147 |
dtype="float32", id="Median Sale Price"
|
148 |
),
|
|
|
159 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
160 |
"Region": datasets.Value(dtype="string", id="Region"),
|
161 |
"Region Type": datasets.ClassLabel(
|
162 |
+
num_classes=len(REGION_TYPES), names=REGION_TYPES
|
163 |
),
|
164 |
"State": datasets.Value(dtype="string", id="State"),
|
165 |
"Home Type": datasets.ClassLabel(
|
166 |
+
num_classes=len(HOME_TYPES), names=HOME_TYPES
|
167 |
),
|
168 |
+
"Date": datasets.Value(dtype="timestamp[ms]", id="Date"),
|
169 |
"Median Listing Price": datasets.Value(
|
170 |
dtype="float32", id="Median Listing Price"
|
171 |
),
|
|
|
189 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
190 |
"Region": datasets.Value(dtype="string", id="Region"),
|
191 |
"Region Type": datasets.ClassLabel(
|
192 |
+
num_classes=len(REGION_TYPES), names=REGION_TYPES
|
193 |
),
|
194 |
"State": datasets.Value(dtype="string", id="State"),
|
195 |
"Home Type": datasets.ClassLabel(
|
196 |
+
num_classes=len(HOME_TYPES), names=HOME_TYPES
|
|
|
197 |
),
|
198 |
+
"Date": datasets.Value(dtype="timestamp[ms]", id="Date"),
|
199 |
"Rent (Smoothed)": datasets.Value(
|
200 |
dtype="float32", id="Rent (Smoothed)"
|
201 |
),
|
|
|
211 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
212 |
"Region": datasets.Value(dtype="string", id="Region"),
|
213 |
"Region Type": datasets.ClassLabel(
|
214 |
+
num_classes=len(REGION_TYPES), names=REGION_TYPES
|
215 |
),
|
216 |
"State": datasets.Value(dtype="string", id="State"),
|
217 |
"Home Type": datasets.ClassLabel(
|
218 |
+
num_classes=len(HOME_TYPES), names=HOME_TYPES
|
|
|
219 |
),
|
220 |
"Date": datasets.Value(dtype="timestamp[ms]", id="Date"),
|
221 |
"Mean Sale to List Ratio (Smoothed)": datasets.Value(
|
|
|
260 |
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
261 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
262 |
"Region": datasets.Value(dtype="string", id="Region"),
|
263 |
+
"Region Type": datasets.ClassLabel(
|
264 |
+
num_classes=len(REGION_TYPES), names=REGION_TYPES
|
265 |
+
),
|
266 |
"State": datasets.Value(dtype="string", id="State"),
|
267 |
"Home Type": datasets.ClassLabel(
|
268 |
+
num_classes=len(HOME_TYPES), names=HOME_TYPES
|
269 |
),
|
270 |
"Bedroom Count": datasets.ClassLabel(
|
271 |
num_classes=6,
|
|
|
278 |
"All Bedrooms",
|
279 |
],
|
280 |
),
|
281 |
+
"Date": datasets.Value(dtype="timestamp[ms]", id="Date"),
|
282 |
"Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)": datasets.Value(
|
283 |
dtype="float32",
|
284 |
id="Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)",
|
|
|
299 |
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
300 |
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
301 |
"Region": datasets.Value(dtype="string", id="Region"),
|
|
|
302 |
"Region Type": datasets.ClassLabel(
|
303 |
+
num_classes=len(REGION_TYPES), names=REGION_TYPES
|
304 |
),
|
305 |
"State": datasets.Value(dtype="string", id="State"),
|
|
|
306 |
"Home Type": datasets.ClassLabel(
|
307 |
+
num_classes=len(HOME_TYPES), names=HOME_TYPES
|
308 |
),
|
309 |
+
"Date": datasets.Value(dtype="timestamp[ms]", id="Date"),
|
310 |
"Mean Listings Price Cut Amount (Smoothed)": datasets.Value(
|
311 |
dtype="float32", id="Mean Listings Price Cut Amount (Smoothed)"
|
312 |
),
|
|
|
344 |
)
|
345 |
|
346 |
def _split_generators(self, dl_manager):
|
347 |
+
file_path = os.path.join("processed", self.config.name, "final.jsonl")
|
348 |
file_train = dl_manager.download(file_path)
|
349 |
# file_test = dl_manager.download(os.path.join(self.config.name, "test.csv"))
|
350 |
# file_eval = dl_manager.download(os.path.join(self.config.name, "valid.csv"))
|