File size: 5,871 Bytes
603f6e2 5ce778f 9388c5f 5ce778f 1bb7cfe 99f8008 1bb7cfe 603f6e2 403af72 5ce778f 403af72 5ce778f 403af72 5ce778f 29e5c25 5ce778f 29e5c25 5ce778f 29e5c25 e2a3756 29e5c25 5ce778f 29e5c25 5ce778f 29e5c25 5ce778f 29e5c25 403af72 86100db 403af72 e2a3756 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
---
license: mit
task_categories:
- question-answering
language:
- en
tags:
- realtime
- news
configs:
- config_name: default
data_files:
- split: relive
path:
- 20250211_qa_public.jsonl
- 20250115_qa_public.jsonl
- 20240705_qa_public.jsonl
- 20240629_qa_public.jsonl
- 20240620_qa_public.jsonl
- 20240613_qa_public.jsonl
- 20240606_qa_public.jsonl
- 20240525_qa_public.jsonl
- 20240519_qa_public.jsonl
- 20240518_qa_public.jsonl
- split: realtime
path:
- latest/20240119_qa_public.jsonl
- past/2024/20240112_qa.jsonl
- past/2024/20240105_qa.jsonl
- past/2023/20231222_qa.jsonl
- past/2023/20231215_qa.jsonl
- past/2023/20231208_qa.jsonl
- past/2023/20231201_qa.jsonl
- past/2023/20231124_qa.jsonl
- past/2023/20231117_qa.jsonl
- past/2023/20231110_qa.jsonl
- past/2023/20231103_qa.jsonl
- past/2023/20231027_qa.jsonl
- past/2023/20231020_qa.jsonl
- past/2023/20231013_qa.jsonl
- past/2023/20231006_qa.jsonl
- past/2023/20230929_qa.jsonl
- past/2023/20230922_qa.jsonl
- past/2023/20230915_qa.jsonl
- past/2023/20230908_qa.jsonl
- past/2023/20230901_qa.jsonl
- past/2023/20230825_qa.jsonl
- past/2023/20230818_qa.jsonl
- past/2023/20230811_qa.jsonl
- past/2023/20230804_qa.jsonl
- past/2023/20230728_qa.jsonl
- past/2023/20230721_qa.jsonl
- past/2023/20230714_qa.jsonl
- past/2023/20230707_qa.jsonl
- past/2023/20230630_qa.jsonl
- past/2023/20230623_qa.jsonl
- past/2023/20230616_qa.jsonl
- past/2023/20230609_qa.jsonl
- past/2023/20230602_qa.jsonl
- past/2023/20230526_qa.jsonl
- past/2023/20230519_qa.jsonl
- past/2023/20230512_qa.jsonl
- past/2023/20230505_qa.jsonl
- past/2023/20230428_qa.jsonl
- past/2023/20230421_qa.jsonl
- past/2023/20230414_qa.jsonl
- past/2023/20230407_qa.jsonl
- past/2023/20230331_qa.jsonl
- past/2023/20230324_qa.jsonl
- past/2023/20230317_qa.jsonl
- past/2023/20230310_qa.jsonl
- past/2023/20230303_qa.jsonl
- past/2023/20230224_qa.jsonl
- past/2023/20230217_qa.jsonl
- past/2023/20230210_qa.jsonl
- past/2023/20230203_qa.jsonl
- past/2023/20230127_qa.jsonl
- past/2023/20230120_qa.jsonl
- past/2023/20230113_qa.jsonl
- past/2023/20230106_qa.jsonl
- past/2022/20221230_qa.jsonl
- past/2022/20221223_qa.jsonl
- past/2022/20221216_qa.jsonl
- past/2022/20221209_qa.jsonl
- past/2022/20221202_qa.jsonl
- past/2022/20221125_qa.jsonl
- past/2022/20221118_qa.jsonl
- past/2022/20221111_qa.jsonl
- past/2022/20221104_qa.jsonl
- past/2022/20221028_qa.jsonl
- past/2022/20221021_qa.jsonl
- past/2022/20221021_qa_public.jsonl
- past/2022/20221014_qa.jsonl
- past/2022/20220617-20221014_qa.jsonl
- past/2022/20221007_qa.jsonl
- past/2022/20220930_qa.jsonl
- past/2022/20220923_qa.jsonl
- past/2022/20220916_qa.jsonl
- past/2022/20220909_qa.jsonl
- past/2022/20220902_qa.jsonl
- past/2022/20220826_qa.jsonl
- past/2022/20220617-20220826_qa.jsonl
- past/2022/20220819_qa.jsonl
- past/2022/20220812_qa.jsonl
- past/2022/20220805_qa.jsonl
- past/2022/20220729_qa.jsonl
- past/2022/20220722_qa.jsonl
- past/2022/20220617-20220722_qa.jsonl
- past/2022/20220715_qa.jsonl
- past/2022/20220617-20220715_qa.jsonl
- past/2022/20220708_qa.jsonl
- past/2022/20220617-20220708_qa.jsonl
- past/2022/20220701_qa.jsonl
- past/2022/20220624_qa.jsonl
- past/2022/20220617-20220624_qa.jsonl
- past/2022/20220617_qa.jsonl
---
# relive-qa
Using RealtimeQA as a starting point for new articles + Q&A using a semi-automated format.
Also see:
- https://github.com/realtimeqa/realtimeqa_public (ended Jan 2024?)
- https://github.com/freshllms/freshqa (ongoing, last Dec 2024)
## Scraper process
Prerequisites: `pip install openai lxml cssselect requests xmltodict` and OpenAI API key
I've added these scripts:
- scrape.py : base script to load plain text from the latest WikiNews articles
- scrape_with_openai.py : pass scraped text to OpenAI's GPT-4o to generate questions and answers for each article
- scrape_morerecent_with_openai.py : scrape recent articles which WikiNews hasn't yet published from `Category:May 2024`, then use OpenAI's GPT-4o for Q&A
An LLM evaluated on this Q&A could read the WikiNews summary, the links collected from the story, and/or do its own web searches.
### Issues
- Prompt should discourage Q&A which are obvious, or stand out from alternative answers.
- Q&A should be based on new information in the article, and not general knowledge.
- Links and the article title could give away the answer as the subject of the article, rather than using reading comprehension.
- WikiNews articles may be niche / local stories, where facts are not known to an LLM unless it reads the specific article
## Original paper
Citation:
```
@inproceedings{
kasai2023realtime,
title={RealTime {QA}: What's the Answer Right Now?},
author={Jungo Kasai and Keisuke Sakaguchi and yoichi takahashi and Ronan Le Bras and Akari Asai and Xinyan Velocity Yu and Dragomir Radev and Noah A. Smith and Yejin Choi and Kentaro Inui},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
year={2023},
eprint={2207.13332},
url={https://openreview.net/forum?id=HfKOIPCvsv}
}
```
|