Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Finnish
Size:
10K<n<100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
""""The Finnish News Corpus for Named Entity Recognition dataset.""" | |
import csv | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@article{ruokolainen2019finnish, | |
title={A finnish news corpus for named entity recognition}, | |
author={Ruokolainen, Teemu and Kauppinen, Pekka and Silfverberg, Miikka and Lind{\'e}n, Krister}, | |
journal={Language Resources and Evaluation}, | |
pages={1--26}, | |
year={2019}, | |
publisher={Springer} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The directory data contains a corpus of Finnish technology related news articles with a manually prepared | |
named entity annotation (digitoday.2014.csv). The text material was extracted from the archives of Digitoday, | |
a Finnish online technology news source (www.digitoday.fi). The corpus consists of 953 articles | |
(193,742 word tokens) with six named entity classes (organization, location, person, product, event, and date). | |
The corpus is available for research purposes and can be readily used for development of NER systems for Finnish. | |
""" | |
_URLS = { | |
"train": "https://github.com/mpsilfve/finer-data/raw/master/data/digitoday.2014.train.csv", | |
"dev": "https://github.com/mpsilfve/finer-data/raw/master/data/digitoday.2014.dev.csv", | |
"test": "https://github.com/mpsilfve/finer-data/raw/master/data/digitoday.2015.test.csv", | |
"test_wikipedia": "https://github.com/mpsilfve/finer-data/raw/master/data/wikipedia.test.csv", | |
} | |
class FinerConfig(datasets.BuilderConfig): | |
"""BuilderConfig for FiNER dataset.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for FiNER dataset. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(FinerConfig, self).__init__(**kwargs) | |
class Finer(datasets.GeneratorBasedBuilder): | |
"""FiNER dataset.""" | |
BUILDER_CONFIGS = [ | |
FinerConfig( | |
name="finer", | |
version=datasets.Version("1.0.0"), | |
description="A Finnish News Corpus for Named Entity Recognition dataset", | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-DATE", | |
"B-EVENT", | |
"B-LOC", | |
"B-ORG", | |
"B-PER", | |
"B-PRO", | |
"I-DATE", | |
"I-EVENT", | |
"I-LOC", | |
"I-ORG", | |
"I-PER", | |
"I-PRO", | |
] | |
) | |
), | |
"nested_ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-DATE", | |
"B-EVENT", | |
"B-LOC", | |
"B-ORG", | |
"B-PER", | |
"B-PRO", | |
"I-DATE", | |
"I-EVENT", | |
"I-LOC", | |
"I-ORG", | |
"I-PER", | |
"I-PRO", | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://github.com/mpsilfve/finer-data", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
downloaded_files = dl_manager.download_and_extract(_URLS) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
datasets.SplitGenerator( | |
name=datasets.Split("test_wikipedia"), gen_kwargs={"filepath": downloaded_files["test_wikipedia"]} | |
), | |
] | |
def _generate_examples(self, filepath): | |
logger.info("โณ Generating ๐ซ๐ฎ examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE) | |
current_tokens = [] | |
current_ner_tags = [] | |
current_nested_ner_tags = [] | |
sentence_counter = 0 | |
for row in data: | |
if row and "" not in row: | |
token, label, nested_label = row[:3] | |
current_tokens.append(token) | |
current_ner_tags.append(label) | |
current_nested_ner_tags.append(nested_label) | |
else: | |
# New sentence | |
if not current_tokens: | |
# Consecutive empty lines will cause empty sentences | |
continue | |
assert len(current_tokens) == len(current_ner_tags), "๐ between len of tokens & labels" | |
assert len(current_ner_tags) == len( | |
current_nested_ner_tags | |
), "๐ between len of labels & nested labels" | |
sentence = ( | |
sentence_counter, | |
{ | |
"id": str(sentence_counter), | |
"tokens": current_tokens, | |
"ner_tags": current_ner_tags, | |
"nested_ner_tags": current_nested_ner_tags, | |
}, | |
) | |
sentence_counter += 1 | |
current_tokens = [] | |
current_ner_tags = [] | |
current_nested_ner_tags = [] | |
yield sentence | |
# Don't forget last sentence in dataset ๐ง | |
if current_tokens: | |
yield sentence_counter, { | |
"id": str(sentence_counter), | |
"tokens": current_tokens, | |
"ner_tags": current_ner_tags, | |
"nested_ner_tags": current_nested_ner_tags, | |
} | |