File size: 11,026 Bytes
59f5aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import faiss, torch, traceback, parselmouth, numpy as np, torchcrepe, torch.nn as nn, pyworld
from fairseq import checkpoint_utils
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
import os, sys
from time import time as ttime
import torch.nn.functional as F
import scipy.signal as signal

now_dir = os.getcwd()
sys.path.append(now_dir)
from config import Config
from multiprocessing import Manager as M

mm = M()
config = Config()


class RVC:
    def __init__(
        self, key, pth_path, index_path, index_rate, n_cpu, inp_q, opt_q, device
    ) -> None:
        """
        初始化
        """
        try:
            global config
            self.inp_q = inp_q
            self.opt_q = opt_q
            self.device = device
            self.f0_up_key = key
            self.time_step = 160 / 16000 * 1000
            self.f0_min = 50
            self.f0_max = 1100
            self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
            self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
            self.sr = 16000
            self.window = 160
            self.n_cpu = n_cpu
            if index_rate != 0:
                self.index = faiss.read_index(index_path)
                self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
                print("index search enabled")
            self.index_rate = index_rate
            models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
                ["hubert_base.pt"],
                suffix="",
            )
            hubert_model = models[0]
            hubert_model = hubert_model.to(config.device)
            if config.is_half:
                hubert_model = hubert_model.half()
            else:
                hubert_model = hubert_model.float()
            hubert_model.eval()
            self.model = hubert_model
            cpt = torch.load(pth_path, map_location="cpu")
            self.tgt_sr = cpt["config"][-1]
            cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
            self.if_f0 = cpt.get("f0", 1)
            self.version = cpt.get("version", "v1")
            if self.version == "v1":
                if self.if_f0 == 1:
                    self.net_g = SynthesizerTrnMs256NSFsid(
                        *cpt["config"], is_half=config.is_half
                    )
                else:
                    self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
            elif self.version == "v2":
                if self.if_f0 == 1:
                    self.net_g = SynthesizerTrnMs768NSFsid(
                        *cpt["config"], is_half=config.is_half
                    )
                else:
                    self.net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
            del self.net_g.enc_q
            print(self.net_g.load_state_dict(cpt["weight"], strict=False))
            self.net_g.eval().to(device)
            if config.is_half:
                self.net_g = self.net_g.half()
            else:
                self.net_g = self.net_g.float()
            self.is_half = config.is_half
        except:
            print(traceback.format_exc())

    def get_f0_post(self, f0):
        f0_min = self.f0_min
        f0_max = self.f0_max
        f0_mel_min = 1127 * np.log(1 + f0_min / 700)
        f0_mel_max = 1127 * np.log(1 + f0_max / 700)
        f0bak = f0.copy()
        f0_mel = 1127 * np.log(1 + f0 / 700)
        f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
            f0_mel_max - f0_mel_min
        ) + 1
        f0_mel[f0_mel <= 1] = 1
        f0_mel[f0_mel > 255] = 255
        f0_coarse = np.rint(f0_mel).astype(np.int)
        return f0_coarse, f0bak

    def get_f0(self, x, f0_up_key, n_cpu, method="harvest"):
        n_cpu = int(n_cpu)
        if method == "crepe":
            return self.get_f0_crepe(x, f0_up_key)
        if method == "rmvpe":
            return self.get_f0_rmvpe(x, f0_up_key)
        if method == "pm":
            p_len = x.shape[0] // 160
            f0 = (
                parselmouth.Sound(x, 16000)
                .to_pitch_ac(
                    time_step=0.01,
                    voicing_threshold=0.6,
                    pitch_floor=50,
                    pitch_ceiling=1100,
                )
                .selected_array["frequency"]
            )

            pad_size = (p_len - len(f0) + 1) // 2
            if pad_size > 0 or p_len - len(f0) - pad_size > 0:
                print(pad_size, p_len - len(f0) - pad_size)
                f0 = np.pad(
                    f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
                )

            f0 *= pow(2, f0_up_key / 12)
            return self.get_f0_post(f0)
        if n_cpu == 1:
            f0, t = pyworld.harvest(
                x.astype(np.double),
                fs=16000,
                f0_ceil=1100,
                f0_floor=50,
                frame_period=10,
            )
            f0 = signal.medfilt(f0, 3)
            f0 *= pow(2, f0_up_key / 12)
            return self.get_f0_post(f0)
        f0bak = np.zeros(x.shape[0] // 160, dtype=np.float64)
        length = len(x)
        part_length = int(length / n_cpu / 160) * 160
        ts = ttime()
        res_f0 = mm.dict()
        for idx in range(n_cpu):
            tail = part_length * (idx + 1) + 320
            if idx == 0:
                self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
            else:
                self.inp_q.put(
                    (idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts)
                )
        while 1:
            res_ts = self.opt_q.get()
            if res_ts == ts:
                break
        f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])]
        for idx, f0 in enumerate(f0s):
            if idx == 0:
                f0 = f0[:-3]
            elif idx != n_cpu - 1:
                f0 = f0[2:-3]
            else:
                f0 = f0[2:-1]
            f0bak[
                part_length * idx // 160 : part_length * idx // 160 + f0.shape[0]
            ] = f0
        f0bak = signal.medfilt(f0bak, 3)
        f0bak *= pow(2, f0_up_key / 12)
        return self.get_f0_post(f0bak)

    def get_f0_crepe(self, x, f0_up_key):
        audio = torch.tensor(np.copy(x))[None].float()
        f0, pd = torchcrepe.predict(
            audio,
            self.sr,
            160,
            self.f0_min,
            self.f0_max,
            "full",
            batch_size=512,
            device=self.device,
            return_periodicity=True,
        )
        pd = torchcrepe.filter.median(pd, 3)
        f0 = torchcrepe.filter.mean(f0, 3)
        f0[pd < 0.1] = 0
        f0 = f0[0].cpu().numpy()
        f0 *= pow(2, f0_up_key / 12)
        return self.get_f0_post(f0)

    def get_f0_rmvpe(self, x, f0_up_key):
        if hasattr(self, "model_rmvpe") == False:
            from lib.rmvpe import RMVPE

            print("loading rmvpe model")
            self.model_rmvpe = RMVPE(
                "rmvpe.pt", is_half=self.is_half, device=self.device
            )
            # self.model_rmvpe = RMVPE("aug2_58000_half.pt", is_half=self.is_half, device=self.device)
        f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
        f0 *= pow(2, f0_up_key / 12)
        return self.get_f0_post(f0)

    def infer(
        self,
        feats: torch.Tensor,
        indata: np.ndarray,
        rate1,
        rate2,
        cache_pitch,
        cache_pitchf,
        f0method,
    ) -> np.ndarray:
        feats = feats.view(1, -1)
        if config.is_half:
            feats = feats.half()
        else:
            feats = feats.float()
        feats = feats.to(self.device)
        t1 = ttime()
        with torch.no_grad():
            padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
            inputs = {
                "source": feats,
                "padding_mask": padding_mask,
                "output_layer": 9 if self.version == "v1" else 12,
            }
            logits = self.model.extract_features(**inputs)
            feats = (
                self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
            )
        t2 = ttime()
        try:
            if hasattr(self, "index") and self.index_rate != 0:
                leng_replace_head = int(rate1 * feats[0].shape[0])
                npy = feats[0][-leng_replace_head:].cpu().numpy().astype("float32")
                score, ix = self.index.search(npy, k=8)
                weight = np.square(1 / score)
                weight /= weight.sum(axis=1, keepdims=True)
                npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
                if config.is_half:
                    npy = npy.astype("float16")
                feats[0][-leng_replace_head:] = (
                    torch.from_numpy(npy).unsqueeze(0).to(self.device) * self.index_rate
                    + (1 - self.index_rate) * feats[0][-leng_replace_head:]
                )
            else:
                print("index search FAIL or disabled")
        except:
            traceback.print_exc()
            print("index search FAIL")
        feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
        t3 = ttime()
        if self.if_f0 == 1:
            pitch, pitchf = self.get_f0(indata, self.f0_up_key, self.n_cpu, f0method)
            cache_pitch[:] = np.append(cache_pitch[pitch[:-1].shape[0] :], pitch[:-1])
            cache_pitchf[:] = np.append(
                cache_pitchf[pitchf[:-1].shape[0] :], pitchf[:-1]
            )
            p_len = min(feats.shape[1], 13000, cache_pitch.shape[0])
        else:
            cache_pitch, cache_pitchf = None, None
            p_len = min(feats.shape[1], 13000)
        t4 = ttime()
        feats = feats[:, :p_len, :]
        if self.if_f0 == 1:
            cache_pitch = cache_pitch[:p_len]
            cache_pitchf = cache_pitchf[:p_len]
            cache_pitch = torch.LongTensor(cache_pitch).unsqueeze(0).to(self.device)
            cache_pitchf = torch.FloatTensor(cache_pitchf).unsqueeze(0).to(self.device)
        p_len = torch.LongTensor([p_len]).to(self.device)
        ii = 0  # sid
        sid = torch.LongTensor([ii]).to(self.device)
        with torch.no_grad():
            if self.if_f0 == 1:
                infered_audio = (
                    self.net_g.infer(
                        feats, p_len, cache_pitch, cache_pitchf, sid, rate2
                    )[0][0, 0]
                    .data.cpu()
                    .float()
                )
            else:
                infered_audio = (
                    self.net_g.infer(feats, p_len, sid, rate2)[0][0, 0]
                    .data.cpu()
                    .float()
                )
        t5 = ttime()
        print("time->fea-index-f0-model:", t2 - t1, t3 - t2, t4 - t3, t5 - t4)
        return infered_audio