File size: 10,872 Bytes
59f5aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import os
import torch

# os.system("wget -P cvec/ https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt")
import gradio as gr
import librosa
import numpy as np
import logging
from fairseq import checkpoint_utils
from vc_infer_pipeline import VC
import traceback
from config import Config
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from i18n import I18nAuto

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

i18n = I18nAuto()
i18n.print()

config = Config()

weight_root = "weights"
weight_uvr5_root = "uvr5_weights"
index_root = "logs"
names = []
hubert_model = None
for name in os.listdir(weight_root):
    if name.endswith(".pth"):
        names.append(name)
index_paths = []
for root, dirs, files in os.walk(index_root, topdown=False):
    for name in files:
        if name.endswith(".index") and "trained" not in name:
            index_paths.append("%s/%s" % (root, name))


def get_vc(sid):
    global n_spk, tgt_sr, net_g, vc, cpt, version
    if sid == "" or sid == []:
        global hubert_model
        if hubert_model != None:  # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
            print("clean_empty_cache")
            del net_g, n_spk, vc, hubert_model, tgt_sr  # ,cpt
            hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            ###楼下不这么折腾清理不干净
            if_f0 = cpt.get("f0", 1)
            version = cpt.get("version", "v1")
            if version == "v1":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs256NSFsid(
                        *cpt["config"], is_half=config.is_half
                    )
                else:
                    net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
            elif version == "v2":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs768NSFsid(
                        *cpt["config"], is_half=config.is_half
                    )
                else:
                    net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
            del net_g, cpt
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            cpt = None
        return {"visible": False, "__type__": "update"}
    person = "%s/%s" % (weight_root, sid)
    print("loading %s" % person)
    cpt = torch.load(person, map_location="cpu")
    tgt_sr = cpt["config"][-1]
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
    if_f0 = cpt.get("f0", 1)
    version = cpt.get("version", "v1")
    if version == "v1":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    elif version == "v2":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
    del net_g.enc_q
    print(net_g.load_state_dict(cpt["weight"], strict=False))
    net_g.eval().to(config.device)
    if config.is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()
    vc = VC(tgt_sr, config)
    n_spk = cpt["config"][-3]
    return {"visible": True, "maximum": n_spk, "__type__": "update"}


def load_hubert():
    global hubert_model
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    hubert_model.eval()


def vc_single(
    sid,
    input_audio_path,
    f0_up_key,
    f0_file,
    f0_method,
    file_index,
    file_index2,
    # file_big_npy,
    index_rate,
    filter_radius,
    resample_sr,
    rms_mix_rate,
    protect,
):  # spk_item, input_audio0, vc_transform0,f0_file,f0method0
    global tgt_sr, net_g, vc, hubert_model, version
    if input_audio_path is None:
        return "You need to upload an audio", None
    f0_up_key = int(f0_up_key)
    try:
        audio = input_audio_path[1] / 32768.0
        if len(audio.shape) == 2:
            audio = np.mean(audio, -1)
        audio = librosa.resample(audio, orig_sr=input_audio_path[0], target_sr=16000)
        audio_max = np.abs(audio).max() / 0.95
        if audio_max > 1:
            audio /= audio_max
        times = [0, 0, 0]
        if hubert_model == None:
            load_hubert()
        if_f0 = cpt.get("f0", 1)
        file_index = (
            (
                file_index.strip(" ")
                .strip('"')
                .strip("\n")
                .strip('"')
                .strip(" ")
                .replace("trained", "added")
            )
            if file_index != ""
            else file_index2
        )  # 防止小白写错,自动帮他替换掉
        # file_big_npy = (
        #     file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
        # )
        audio_opt = vc.pipeline(
            hubert_model,
            net_g,
            sid,
            audio,
            input_audio_path,
            times,
            f0_up_key,
            f0_method,
            file_index,
            # file_big_npy,
            index_rate,
            if_f0,
            filter_radius,
            tgt_sr,
            resample_sr,
            rms_mix_rate,
            version,
            protect,
            f0_file=f0_file,
        )
        if resample_sr >= 16000 and tgt_sr != resample_sr:
            tgt_sr = resample_sr
        index_info = (
            "Using index:%s." % file_index
            if os.path.exists(file_index)
            else "Index not used."
        )
        return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
            index_info,
            times[0],
            times[1],
            times[2],
        ), (tgt_sr, audio_opt)
    except:
        info = traceback.format_exc()
        print(info)
        return info, (None, None)


app = gr.Blocks()
with app:
    with gr.Tabs():
        with gr.TabItem("在线demo"):
            gr.Markdown(
                value="""
                RVC 在线demo
                """
            )
            sid = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names))
            with gr.Column():
                spk_item = gr.Slider(
                    minimum=0,
                    maximum=2333,
                    step=1,
                    label=i18n("请选择说话人id"),
                    value=0,
                    visible=False,
                    interactive=True,
                )
            sid.change(
                fn=get_vc,
                inputs=[sid],
                outputs=[spk_item],
            )
            gr.Markdown(
                value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ")
            )
            vc_input3 = gr.Audio(label="上传音频(长度小于90秒)")
            vc_transform0 = gr.Number(label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0)
            f0method0 = gr.Radio(
                label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"),
                choices=["pm", "harvest", "crepe", "rmvpe"],
                value="pm",
                interactive=True,
            )
            filter_radius0 = gr.Slider(
                minimum=0,
                maximum=7,
                label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
                value=3,
                step=1,
                interactive=True,
            )
            with gr.Column():
                file_index1 = gr.Textbox(
                    label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
                    value="",
                    interactive=False,
                    visible=False,
                )
            file_index2 = gr.Dropdown(
                label=i18n("自动检测index路径,下拉式选择(dropdown)"),
                choices=sorted(index_paths),
                interactive=True,
            )
            index_rate1 = gr.Slider(
                minimum=0,
                maximum=1,
                label=i18n("检索特征占比"),
                value=0.88,
                interactive=True,
            )
            resample_sr0 = gr.Slider(
                minimum=0,
                maximum=48000,
                label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
                value=0,
                step=1,
                interactive=True,
            )
            rms_mix_rate0 = gr.Slider(
                minimum=0,
                maximum=1,
                label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
                value=1,
                interactive=True,
            )
            protect0 = gr.Slider(
                minimum=0,
                maximum=0.5,
                label=i18n("保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"),
                value=0.33,
                step=0.01,
                interactive=True,
            )
            f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
            but0 = gr.Button(i18n("转换"), variant="primary")
            vc_output1 = gr.Textbox(label=i18n("输出信息"))
            vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
            but0.click(
                vc_single,
                [
                    spk_item,
                    vc_input3,
                    vc_transform0,
                    f0_file,
                    f0method0,
                    file_index1,
                    file_index2,
                    # file_big_npy1,
                    index_rate1,
                    filter_radius0,
                    resample_sr0,
                    rms_mix_rate0,
                    protect0,
                ],
                [vc_output1, vc_output2],
            )


app.launch()