File size: 27,555 Bytes
59f5aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
import os, sys

if sys.platform == "darwin":
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

now_dir = os.getcwd()
sys.path.append(now_dir)
import multiprocessing


class Harvest(multiprocessing.Process):
    def __init__(self, inp_q, opt_q):
        multiprocessing.Process.__init__(self)
        self.inp_q = inp_q
        self.opt_q = opt_q

    def run(self):
        import numpy as np, pyworld

        while 1:
            idx, x, res_f0, n_cpu, ts = self.inp_q.get()
            f0, t = pyworld.harvest(
                x.astype(np.double),
                fs=16000,
                f0_ceil=1100,
                f0_floor=50,
                frame_period=10,
            )
            res_f0[idx] = f0
            if len(res_f0.keys()) >= n_cpu:
                self.opt_q.put(ts)


if __name__ == "__main__":
    from multiprocessing import Queue
    from queue import Empty
    import numpy as np
    import multiprocessing
    import traceback, re
    import json
    import PySimpleGUI as sg
    import sounddevice as sd
    import noisereduce as nr
    from multiprocessing import cpu_count
    import librosa, torch, time, threading
    import torch.nn.functional as F
    import torchaudio.transforms as tat
    from i18n import I18nAuto

    i18n = I18nAuto()
    device = torch.device(
        "cuda"
        if torch.cuda.is_available()
        else ("mps" if torch.backends.mps.is_available() else "cpu")
    )
    current_dir = os.getcwd()
    inp_q = Queue()
    opt_q = Queue()
    n_cpu = min(cpu_count(), 8)
    for _ in range(n_cpu):
        Harvest(inp_q, opt_q).start()
    from rvc_for_realtime import RVC

    class GUIConfig:
        def __init__(self) -> None:
            self.pth_path: str = ""
            self.index_path: str = ""
            self.pitch: int = 12
            self.samplerate: int = 40000
            self.block_time: float = 1.0  # s
            self.buffer_num: int = 1
            self.threhold: int = -30
            self.crossfade_time: float = 0.08
            self.extra_time: float = 0.04
            self.I_noise_reduce = False
            self.O_noise_reduce = False
            self.index_rate = 0.3
            self.n_cpu = min(n_cpu, 8)
            self.f0method = "harvest"
            self.sg_input_device = ""
            self.sg_output_device = ""

    class GUI:
        def __init__(self) -> None:
            self.config = GUIConfig()
            self.flag_vc = False

            self.launcher()

        def load(self):
            input_devices, output_devices, _, _ = self.get_devices()
            try:
                with open("values1.json", "r") as j:
                    data = json.load(j)
                    data["pm"] = data["f0method"] == "pm"
                    data["harvest"] = data["f0method"] == "harvest"
                    data["crepe"] = data["f0method"] == "crepe"
                    data["rmvpe"] = data["f0method"] == "rmvpe"
            except:
                with open("values1.json", "w") as j:
                    data = {
                        "pth_path": " ",
                        "index_path": " ",
                        "sg_input_device": input_devices[sd.default.device[0]],
                        "sg_output_device": output_devices[sd.default.device[1]],
                        "threhold": "-45",
                        "pitch": "0",
                        "index_rate": "0",
                        "block_time": "1",
                        "crossfade_length": "0.04",
                        "extra_time": "1",
                        "f0method": "rmvpe",
                    }
            return data

        def launcher(self):
            data = self.load()
            sg.theme("LightBlue3")
            input_devices, output_devices, _, _ = self.get_devices()
            layout = [
                [
                    sg.Frame(
                        title=i18n("加载模型"),
                        layout=[
                            [
                                sg.Input(
                                    default_text=data.get("pth_path", ""),
                                    key="pth_path",
                                ),
                                sg.FileBrowse(
                                    i18n("选择.pth文件"),
                                    initial_folder=os.path.join(os.getcwd(), "weights"),
                                    file_types=((". pth"),),
                                ),
                            ],
                            [
                                sg.Input(
                                    default_text=data.get("index_path", ""),
                                    key="index_path",
                                ),
                                sg.FileBrowse(
                                    i18n("选择.index文件"),
                                    initial_folder=os.path.join(os.getcwd(), "logs"),
                                    file_types=((". index"),),
                                ),
                            ],
                        ],
                    )
                ],
                [
                    sg.Frame(
                        layout=[
                            [
                                sg.Text(i18n("输入设备")),
                                sg.Combo(
                                    input_devices,
                                    key="sg_input_device",
                                    default_value=data.get("sg_input_device", ""),
                                ),
                            ],
                            [
                                sg.Text(i18n("输出设备")),
                                sg.Combo(
                                    output_devices,
                                    key="sg_output_device",
                                    default_value=data.get("sg_output_device", ""),
                                ),
                            ],
                            [sg.Button(i18n("重载设备列表"), key="reload_devices")],
                        ],
                        title=i18n("音频设备(请使用同种类驱动)"),
                    )
                ],
                [
                    sg.Frame(
                        layout=[
                            [
                                sg.Text(i18n("响应阈值")),
                                sg.Slider(
                                    range=(-60, 0),
                                    key="threhold",
                                    resolution=1,
                                    orientation="h",
                                    default_value=data.get("threhold", ""),
                                ),
                            ],
                            [
                                sg.Text(i18n("音调设置")),
                                sg.Slider(
                                    range=(-24, 24),
                                    key="pitch",
                                    resolution=1,
                                    orientation="h",
                                    default_value=data.get("pitch", ""),
                                ),
                            ],
                            [
                                sg.Text(i18n("Index Rate")),
                                sg.Slider(
                                    range=(0.0, 1.0),
                                    key="index_rate",
                                    resolution=0.01,
                                    orientation="h",
                                    default_value=data.get("index_rate", ""),
                                ),
                            ],
                            [
                                sg.Text(i18n("音高算法")),
                                sg.Radio(
                                    "pm",
                                    "f0method",
                                    key="pm",
                                    default=data.get("pm", "") == True,
                                ),
                                sg.Radio(
                                    "harvest",
                                    "f0method",
                                    key="harvest",
                                    default=data.get("harvest", "") == True,
                                ),
                                sg.Radio(
                                    "crepe",
                                    "f0method",
                                    key="crepe",
                                    default=data.get("crepe", "") == True,
                                ),
                                sg.Radio(
                                    "rmvpe",
                                    "f0method",
                                    key="rmvpe",
                                    default=data.get("rmvpe", "") == True,
                                ),
                            ],
                        ],
                        title=i18n("常规设置"),
                    ),
                    sg.Frame(
                        layout=[
                            [
                                sg.Text(i18n("采样长度")),
                                sg.Slider(
                                    range=(0.12, 2.4),
                                    key="block_time",
                                    resolution=0.03,
                                    orientation="h",
                                    default_value=data.get("block_time", ""),
                                ),
                            ],
                            [
                                sg.Text(i18n("harvest进程数")),
                                sg.Slider(
                                    range=(1, n_cpu),
                                    key="n_cpu",
                                    resolution=1,
                                    orientation="h",
                                    default_value=data.get(
                                        "n_cpu", min(self.config.n_cpu, n_cpu)
                                    ),
                                ),
                            ],
                            [
                                sg.Text(i18n("淡入淡出长度")),
                                sg.Slider(
                                    range=(0.01, 0.15),
                                    key="crossfade_length",
                                    resolution=0.01,
                                    orientation="h",
                                    default_value=data.get("crossfade_length", ""),
                                ),
                            ],
                            [
                                sg.Text(i18n("额外推理时长")),
                                sg.Slider(
                                    range=(0.05, 3.00),
                                    key="extra_time",
                                    resolution=0.01,
                                    orientation="h",
                                    default_value=data.get("extra_time", ""),
                                ),
                            ],
                            [
                                sg.Checkbox(i18n("输入降噪"), key="I_noise_reduce"),
                                sg.Checkbox(i18n("输出降噪"), key="O_noise_reduce"),
                            ],
                        ],
                        title=i18n("性能设置"),
                    ),
                ],
                [
                    sg.Button(i18n("开始音频转换"), key="start_vc"),
                    sg.Button(i18n("停止音频转换"), key="stop_vc"),
                    sg.Text(i18n("推理时间(ms):")),
                    sg.Text("0", key="infer_time"),
                ],
            ]
            self.window = sg.Window("RVC - GUI", layout=layout)
            self.event_handler()

        def event_handler(self):
            while True:
                event, values = self.window.read()
                if event == sg.WINDOW_CLOSED:
                    self.flag_vc = False
                    exit()
                if event == "reload_devices":
                    prev_input = self.window["sg_input_device"].get()
                    prev_output = self.window["sg_output_device"].get()
                    input_devices, output_devices, _, _ = self.get_devices(update=True)
                    if prev_input not in input_devices:
                        self.config.sg_input_device = input_devices[0]
                    else:
                        self.config.sg_input_device = prev_input
                    self.window["sg_input_device"].Update(values=input_devices)
                    self.window["sg_input_device"].Update(
                        value=self.config.sg_input_device
                    )
                    if prev_output not in output_devices:
                        self.config.sg_output_device = output_devices[0]
                    else:
                        self.config.sg_output_device = prev_output
                    self.window["sg_output_device"].Update(values=output_devices)
                    self.window["sg_output_device"].Update(
                        value=self.config.sg_output_device
                    )
                if event == "start_vc" and self.flag_vc == False:
                    if self.set_values(values) == True:
                        print("using_cuda:" + str(torch.cuda.is_available()))
                        self.start_vc()
                        settings = {
                            "pth_path": values["pth_path"],
                            "index_path": values["index_path"],
                            "sg_input_device": values["sg_input_device"],
                            "sg_output_device": values["sg_output_device"],
                            "threhold": values["threhold"],
                            "pitch": values["pitch"],
                            "index_rate": values["index_rate"],
                            "block_time": values["block_time"],
                            "crossfade_length": values["crossfade_length"],
                            "extra_time": values["extra_time"],
                            "n_cpu": values["n_cpu"],
                            "f0method": ["pm", "harvest", "crepe", "rmvpe"][
                                [
                                    values["pm"],
                                    values["harvest"],
                                    values["crepe"],
                                    values["rmvpe"],
                                ].index(True)
                            ],
                        }
                        with open("values1.json", "w") as j:
                            json.dump(settings, j)
                if event == "stop_vc" and self.flag_vc == True:
                    self.flag_vc = False

        def set_values(self, values):
            if len(values["pth_path"].strip()) == 0:
                sg.popup(i18n("请选择pth文件"))
                return False
            if len(values["index_path"].strip()) == 0:
                sg.popup(i18n("请选择index文件"))
                return False
            pattern = re.compile("[^\x00-\x7F]+")
            if pattern.findall(values["pth_path"]):
                sg.popup(i18n("pth文件路径不可包含中文"))
                return False
            if pattern.findall(values["index_path"]):
                sg.popup(i18n("index文件路径不可包含中文"))
                return False
            self.set_devices(values["sg_input_device"], values["sg_output_device"])
            self.config.pth_path = values["pth_path"]
            self.config.index_path = values["index_path"]
            self.config.threhold = values["threhold"]
            self.config.pitch = values["pitch"]
            self.config.block_time = values["block_time"]
            self.config.crossfade_time = values["crossfade_length"]
            self.config.extra_time = values["extra_time"]
            self.config.I_noise_reduce = values["I_noise_reduce"]
            self.config.O_noise_reduce = values["O_noise_reduce"]
            self.config.index_rate = values["index_rate"]
            self.config.n_cpu = values["n_cpu"]
            self.config.f0method = ["pm", "harvest", "crepe", "rmvpe"][
                [
                    values["pm"],
                    values["harvest"],
                    values["crepe"],
                    values["rmvpe"],
                ].index(True)
            ]
            return True

        def start_vc(self):
            torch.cuda.empty_cache()
            self.flag_vc = True
            self.rvc = RVC(
                self.config.pitch,
                self.config.pth_path,
                self.config.index_path,
                self.config.index_rate,
                self.config.n_cpu,
                inp_q,
                opt_q,
                device,
            )
            self.config.samplerate = self.rvc.tgt_sr
            self.config.crossfade_time = min(
                self.config.crossfade_time, self.config.block_time
            )
            self.block_frame = int(self.config.block_time * self.config.samplerate)
            self.crossfade_frame = int(
                self.config.crossfade_time * self.config.samplerate
            )
            self.sola_search_frame = int(0.01 * self.config.samplerate)
            self.extra_frame = int(self.config.extra_time * self.config.samplerate)
            self.zc = self.rvc.tgt_sr // 100
            self.input_wav: np.ndarray = np.zeros(
                int(
                    np.ceil(
                        (
                            self.extra_frame
                            + self.crossfade_frame
                            + self.sola_search_frame
                            + self.block_frame
                        )
                        / self.zc
                    )
                    * self.zc
                ),
                dtype="float32",
            )
            self.output_wav_cache: torch.Tensor = torch.zeros(
                int(
                    np.ceil(
                        (
                            self.extra_frame
                            + self.crossfade_frame
                            + self.sola_search_frame
                            + self.block_frame
                        )
                        / self.zc
                    )
                    * self.zc
                ),
                device=device,
                dtype=torch.float32,
            )
            self.pitch: np.ndarray = np.zeros(
                self.input_wav.shape[0] // self.zc,
                dtype="int32",
            )
            self.pitchf: np.ndarray = np.zeros(
                self.input_wav.shape[0] // self.zc,
                dtype="float64",
            )
            self.output_wav: torch.Tensor = torch.zeros(
                self.block_frame, device=device, dtype=torch.float32
            )
            self.sola_buffer: torch.Tensor = torch.zeros(
                self.crossfade_frame, device=device, dtype=torch.float32
            )
            self.fade_in_window: torch.Tensor = torch.linspace(
                0.0, 1.0, steps=self.crossfade_frame, device=device, dtype=torch.float32
            )
            self.fade_out_window: torch.Tensor = 1 - self.fade_in_window
            self.resampler = tat.Resample(
                orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32
            ).to(device)
            thread_vc = threading.Thread(target=self.soundinput)
            thread_vc.start()

        def soundinput(self):
            """
            接受音频输入
            """
            channels = 1 if sys.platform == "darwin" else 2
            with sd.Stream(
                channels=channels,
                callback=self.audio_callback,
                blocksize=self.block_frame,
                samplerate=self.config.samplerate,
                dtype="float32",
            ):
                while self.flag_vc:
                    time.sleep(self.config.block_time)
                    print("Audio block passed.")
            print("ENDing VC")

        def audio_callback(
            self, indata: np.ndarray, outdata: np.ndarray, frames, times, status
        ):
            """
            音频处理
            """
            start_time = time.perf_counter()
            indata = librosa.to_mono(indata.T)
            if self.config.I_noise_reduce:
                indata[:] = nr.reduce_noise(y=indata, sr=self.config.samplerate)
            """noise gate"""
            frame_length = 2048
            hop_length = 1024
            rms = librosa.feature.rms(
                y=indata, frame_length=frame_length, hop_length=hop_length
            )
            if self.config.threhold > -60:
                db_threhold = (
                    librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold
                )
                for i in range(db_threhold.shape[0]):
                    if db_threhold[i]:
                        indata[i * hop_length : (i + 1) * hop_length] = 0
            self.input_wav[:] = np.append(self.input_wav[self.block_frame :], indata)
            # infer
            inp = torch.from_numpy(self.input_wav).to(device)
            ##0
            res1 = self.resampler(inp)
            ###55%
            rate1 = self.block_frame / (
                self.extra_frame
                + self.crossfade_frame
                + self.sola_search_frame
                + self.block_frame
            )
            rate2 = (
                self.crossfade_frame + self.sola_search_frame + self.block_frame
            ) / (
                self.extra_frame
                + self.crossfade_frame
                + self.sola_search_frame
                + self.block_frame
            )
            res2 = self.rvc.infer(
                res1,
                res1[-self.block_frame :].cpu().numpy(),
                rate1,
                rate2,
                self.pitch,
                self.pitchf,
                self.config.f0method,
            )
            self.output_wav_cache[-res2.shape[0] :] = res2
            infer_wav = self.output_wav_cache[
                -self.crossfade_frame - self.sola_search_frame - self.block_frame :
            ]
            # SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
            cor_nom = F.conv1d(
                infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame],
                self.sola_buffer[None, None, :],
            )
            cor_den = torch.sqrt(
                F.conv1d(
                    infer_wav[
                        None, None, : self.crossfade_frame + self.sola_search_frame
                    ]
                    ** 2,
                    torch.ones(1, 1, self.crossfade_frame, device=device),
                )
                + 1e-8
            )
            if sys.platform == "darwin":
                _, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0])
                sola_offset = sola_offset.item()
            else:
                sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
            print("sola offset: " + str(int(sola_offset)))
            self.output_wav[:] = infer_wav[sola_offset : sola_offset + self.block_frame]
            self.output_wav[: self.crossfade_frame] *= self.fade_in_window
            self.output_wav[: self.crossfade_frame] += self.sola_buffer[:]
            # crossfade
            if sola_offset < self.sola_search_frame:
                self.sola_buffer[:] = (
                    infer_wav[
                        -self.sola_search_frame
                        - self.crossfade_frame
                        + sola_offset : -self.sola_search_frame
                        + sola_offset
                    ]
                    * self.fade_out_window
                )
            else:
                self.sola_buffer[:] = (
                    infer_wav[-self.crossfade_frame :] * self.fade_out_window
                )
            if self.config.O_noise_reduce:
                if sys.platform == "darwin":
                    noise_reduced_signal = nr.reduce_noise(
                        y=self.output_wav[:].cpu().numpy(), sr=self.config.samplerate
                    )
                    outdata[:] = noise_reduced_signal[:, np.newaxis]
                else:
                    outdata[:] = np.tile(
                        nr.reduce_noise(
                            y=self.output_wav[:].cpu().numpy(),
                            sr=self.config.samplerate,
                        ),
                        (2, 1),
                    ).T
            else:
                if sys.platform == "darwin":
                    outdata[:] = self.output_wav[:].cpu().numpy()[:, np.newaxis]
                else:
                    outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy()
            total_time = time.perf_counter() - start_time
            self.window["infer_time"].update(int(total_time * 1000))
            print("infer time:" + str(total_time))

        def get_devices(self, update: bool = True):
            """获取设备列表"""
            if update:
                sd._terminate()
                sd._initialize()
            devices = sd.query_devices()
            hostapis = sd.query_hostapis()
            for hostapi in hostapis:
                for device_idx in hostapi["devices"]:
                    devices[device_idx]["hostapi_name"] = hostapi["name"]
            input_devices = [
                f"{d['name']} ({d['hostapi_name']})"
                for d in devices
                if d["max_input_channels"] > 0
            ]
            output_devices = [
                f"{d['name']} ({d['hostapi_name']})"
                for d in devices
                if d["max_output_channels"] > 0
            ]
            input_devices_indices = [
                d["index"] if "index" in d else d["name"]
                for d in devices
                if d["max_input_channels"] > 0
            ]
            output_devices_indices = [
                d["index"] if "index" in d else d["name"]
                for d in devices
                if d["max_output_channels"] > 0
            ]
            return (
                input_devices,
                output_devices,
                input_devices_indices,
                output_devices_indices,
            )

        def set_devices(self, input_device, output_device):
            """设置输出设备"""
            (
                input_devices,
                output_devices,
                input_device_indices,
                output_device_indices,
            ) = self.get_devices()
            sd.default.device[0] = input_device_indices[
                input_devices.index(input_device)
            ]
            sd.default.device[1] = output_device_indices[
                output_devices.index(output_device)
            ]
            print("input device:" + str(sd.default.device[0]) + ":" + str(input_device))
            print(
                "output device:" + str(sd.default.device[1]) + ":" + str(output_device)
            )

    gui = GUI()