|
import csv |
|
import datasets |
|
|
|
_DOWNLOAD_URL = "https://huggingface.co/datasets/mrojas/task1a/resolve/main/data.csv" |
|
|
|
class Task1a(datasets.GeneratorBasedBuilder): |
|
"""Task1a classification dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names = ["0", "1"]), |
|
} |
|
) |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
path = dl_manager.download_and_extract(_DOWNLOAD_URL) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": path, "is_test": False}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": path, "is_test": True}), |
|
] |
|
|
|
def _generate_examples(self, filepath, is_test, test_size = 0.3): |
|
"""Generate examples.""" |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
train_threshold = 122 |
|
csv_reader = csv.reader( |
|
csv_file |
|
) |
|
|
|
for id_, row in enumerate(csv_reader): |
|
if id_ > 0: |
|
print(row) |
|
text, label = row |
|
current_row = id_, {"text": text, "label": int(label)} |
|
if (id_ < train_threshold) & (not is_test): |
|
yield current_row |
|
if (id_ >= train_threshold) & (is_test): |
|
yield current_row |