physicsgen / physicsgen.py
mspitzna
Update hf_hub_download calls in physicsgen.py to specify repo_type for parquet file retrieval
a7ac9c1
import os
import datasets
import pyarrow.parquet as pq
from huggingface_hub import hf_hub_download
# Define configurations for each flavor.
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="sound_baseline",
description="Physical dataset: baseline variant",
data_dir="sound_baseline"
),
datasets.BuilderConfig(
name="sound_reflection",
description="Physical dataset: reflection variant",
data_dir="sound_reflection"
),
datasets.BuilderConfig(
name="sound_diffraction",
description="Physical dataset: diffraction variant",
data_dir="sound_diffraction"
),
datasets.BuilderConfig(
name="sound_combined",
description="Physical dataset: combined variant",
data_dir="sound_combined"
),
datasets.BuilderConfig(
name="lens_p1",
description="Distortion dataset variant",
data_dir="lens_p1"
),
datasets.BuilderConfig(
name="lens_p2",
description="Distortion dataset variant",
data_dir="lens_p2"
),
datasets.BuilderConfig(
name="ball_roll",
description="Double image dataset variant",
data_dir="ball_roll"
),
datasets.BuilderConfig(
name="ball_bounce",
description="Double image dataset variant",
data_dir="ball_bounce"
),
]
class MyPhysicalDataset(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = BUILDER_CONFIGS
VERSION = datasets.Version("1.1.0")
def _info(self):
if self.config.name in ["sound_baseline", "sound_reflection", "sound_diffraction", "sound_combined"]:
features = datasets.Features({
"lat": datasets.Value("float"),
"long": datasets.Value("float"),
"db": datasets.Value("string"),
"soundmap": datasets.Image(), # Expects a dict: {"bytes": ...}
"osm": datasets.Image(),
"temperature": datasets.Value("int32"),
"humidity": datasets.Value("int32"),
"yaw": datasets.Value("float"),
"sample_id": datasets.Value("int32"),
"soundmap_512": datasets.Image(),
})
elif self.config.name in ["lens_p1", "lens_p2"]:
features = datasets.Features({
"label_path": datasets.Value("string"),
"fx": datasets.Value("float"),
"k1": datasets.Value("float"),
"k2": datasets.Value("float"),
"k3": datasets.Value("float"),
"p1": datasets.Value("float"),
"p2": datasets.Value("float"),
"cx": datasets.Value("float"),
})
elif self.config.name in ["ball_roll", "ball_bounce"]:
features = datasets.Features({
"ImgName": datasets.Value("string"),
"StartHeight": datasets.Value("int32"),
"GroundIncli": datasets.Value("float"),
"InputTime": datasets.Value("int32"),
"TargetTime": datasets.Value("int32"),
"input_image": datasets.Image(), # Expects {"bytes": ...}
"target_image": datasets.Image(),
})
else:
raise ValueError(f"Unknown config name: {self.config.name}")
return datasets.DatasetInfo(
description="Multiple variant physical tasks dataset stored as parquet files.",
features=features,
)
def _split_generators(self, dl_manager):
# Use hf_hub_download to fetch the parquet files directly from the Hub.
repo_id = "mspitzna/physicsgen"
train_file = hf_hub_download(repo_id=repo_id, filename=f"{self.config.data_dir}/train.parquet", repo_type="dataset")
test_file = hf_hub_download(repo_id=repo_id, filename=f"{self.config.data_dir}/test.parquet", repo_type="dataset")
eval_file = hf_hub_download(repo_id=repo_id, filename=f"{self.config.data_dir}/eval.parquet", repo_type="dataset")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"parquet_file": train_file},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"parquet_file": test_file},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"parquet_file": eval_file},
),
]
def _generate_examples(self, parquet_file):
table = pq.read_table(parquet_file)
examples = table.to_pylist()
# Wrap image bytes into the format expected by datasets.Image.
if self.config.name in ["sound_baseline", "sound_reflection", "sound_diffraction", "sound_combined"]:
for example in examples:
for key in ["soundmap", "osm", "soundmap_512"]:
if example.get(key) is not None and isinstance(example[key], bytes):
example[key] = {"bytes": example[key]}
elif self.config.name in ["ball_roll", "ball_bounce"]:
for example in examples:
for key in ["input_image", "target_image"]:
if example.get(key) is not None and isinstance(example[key], bytes):
example[key] = {"bytes": example[key]}
for idx, row in enumerate(examples):
yield idx, row