File size: 6,560 Bytes
e4376c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab016e7
e4376c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53a1e74
14ea993
 
 
 
e4376c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fe278c
 
1dcaebd
 
7e18e50
3ad4a79
7e18e50
3449c96
e4376c6
 
 
 
 
a5cc67d
e4376c6
a5cc67d
 
 
f17de41
e4376c6
14ea993
e4376c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""Bank Dataset"""

from typing import List

import datasets

import pandas


VERSION = datasets.Version("1.0.0")
_ORIGINAL_FEATURE_NAMES = [
    "age",
    "job",
    "marital",
    "education",
    "default",
    "balance",
    "housing",
    "loan",
    "contact",
    "day",
    "month",
    "duration",
    "campaign",
    "pdays",
    "previous",
    "poutcome",
    "y"
]
_BASE_FEATURE_NAMES = [
    "age",
    "job",
    "marital_status",
    "education",
    "has_defaulted",
    "account_balance",
    "has_housing_loan",
    "has_personal_loan",
    "month_of_last_contact",
    "number_of_calls_in_ad_campaign",
    "days_since_last_contact_of_previous_campaign",
    "number_of_calls_before_this_campaign",
    "successfull_subscription"
]

DESCRIPTION = "Bank dataset for subscription prediction."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/bank+marketing"
_URLS = ("https://huggingface.co/datasets/mstz/bank/raw/main/bank-full.csv")
_CITATION = """"""

# Dataset info
urls_per_split = {
    "train": "https://huggingface.co/datasets/mstz/bank/raw/main/bank-full.csv",
}
features_types_per_config = {
    "encoding": {
        "feature": datasets.Value("string"),
        "original_value": datasets.Value("string"),
        "encoded_value":  datasets.Value("int8"),
    },

    "subscription": {
        "age": datasets.Value("int64"),
        "job": datasets.Value("string"),
        "marital_status": datasets.Value("string"),
        "education": datasets.Value("int8"),
        "has_defaulted": datasets.Value("int8"),
        "account_balance": datasets.Value("int64"),
        "has_housing_loan": datasets.Value("int8"),
        "has_personal_loan": datasets.Value("int8"),
        "month_of_last_contact": datasets.Value("string"),
        "number_of_calls_in_ad_campaign": datasets.Value("string"),
        "days_since_last_contact_of_previous_campaign": datasets.Value("int16"),
        "number_of_calls_before_this_campaign": datasets.Value("int16"),
        "successfull_subscription": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
    }
    
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class BankConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(BankConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Bank(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "subscription"
    BUILDER_CONFIGS = [
        BankConfig(name="encoding",
                   description="Encoding dictionaries for discrete features."),
        BankConfig(name="subscription",
                   description="Bank binary classification for client subscription."),
    ]


    def _info(self):
        if self.config.name not in features_per_config:
            raise ValueError(f"Unknown configuration: {self.config.name}")
        
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
        ]
    
    def _generate_examples(self, filepath: str):
        if self.config.name == "encoding":
            data = self.encoding_dictionaries()
        else:
            data = pandas.read_csv(filepath, sep=";")
            data = self.preprocess(data, config=self.config.name)

        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row

    def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame:
        data.drop("day", axis="columns", inplace=True)
        data.drop("contact", axis="columns", inplace=True)
        data.drop("duration", axis="columns", inplace=True)
        data.drop("poutcome", axis="columns", inplace=True)

        # discretize features
        data.loc[:, "education"] = data.education.apply(self.encode_education)
        data.loc[:, "loan"] = data.loan.apply(self.encode_yes_no)
        data.loc[:, "housing"] = data.housing.apply(self.encode_yes_no)
        data.loc[:, "default"] = data.default.apply(self.encode_yes_no)
        
        data.columns = _BASE_FEATURE_NAMES
        
        data.loc[:, "successfull_subscription"] = data.successfull_subscription.apply(lambda x: 0 if x == "no" else 1)

        for f in _BASE_FEATURE_NAMES:
            print(f, data[f].max(), data.dtypes[f])

        if config == "subscription":
            return data
        else:
            raise ValueError(f"Unknown config: {config}")

    def encoding_dictionaries(self):
        education_dic, yes_no_dic = self.education_encoding_dic(), self.yes_no_encoding_dic()
        education_data = [("education", education, code) for education, code in education_dic.items()]
        loan_data = [("loan", loan, code) for loan, code in yes_no_dic.items()]
        housing_data = [("housing", housing, code) for housing, code in yes_no_dic.items()]
        default_data = [("default", default, code) for default, code in yes_no_dic.items()]
        data = pandas.DataFrame(education_data + loan_data + housing_data + default_data,
                                columns=["feature", "original_value", "encoded_value"])
               
        return data

    def encode_education(self, education):
        return self.education_encoding_dic()[education]

    def decode_education(self, code):
        return self.education_decoding_dic()[code]
    
    def education_decoding_dic(self):
        return {
            0: "unknown",
            1: "primary",
            2: "secondary",
            3: "tertiary"
        }

    def education_encoding_dic(self):
        return {
            "unknown": 0,
            "primary": 1,
            "secondary": 2,
            "tertiary": 3
        }
        
    def encode_yes_no(self, yes_no):
        return self.yes_no_encoding_dic()[yes_no]

    def decode_yes_no(self, code):
        return self.yes_no_decoding_dic()[code]
    
    def yes_no_decoding_dic(self):
        return {
            0: "no",
            1: "yes"
        }

    def yes_no_encoding_dic(self):
        return {
            "no": 0,
            "yes": 1
        }