"""Chess""" from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") _BASE_FEATURE_NAMES = [ "bkblk", "bknwy", "bkon8", "bkona", "bkspr", "bkxbq", "bkxcr", "bkxwp", "blxwp", "bxqsq", "cntxt", "dsopp", "dwipd", "hdchk", "katri", "mulch", "qxmsq", "r2ar8", "reskd", "reskr", "rimmx", "rkxwp", "rxmsq", "simpl", "skach", "skewr", "skrxp", "spcop", "stlmt", "thrsk", "wkcti", "wkna8", "wknck", "wkovl", "wkpos", "white_wins" ] DESCRIPTION = "Chess dataset from the UCI ML repository." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Chess" _URLS = ("https://huggingface.co/datasets/mstz/chess/raw/chess.csv") _CITATION = """ @misc{misc_chess_(king-rook_vs._king-pawn)_22, title = {{Chess (King-Rook vs. King-Pawn)}}, year = {1989}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5DK5C}} }""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/chess/raw/main/kr-vs-kp.data" } features_types_per_config = { "chess": { "bkblk": datasets.Value("string"), "bknwy": datasets.Value("string"), "bkon8": datasets.Value("string"), "bkona": datasets.Value("string"), "bkspr": datasets.Value("string"), "bkxbq": datasets.Value("string"), "bkxcr": datasets.Value("string"), "bkxwp": datasets.Value("string"), "blxwp": datasets.Value("string"), "bxqsq": datasets.Value("string"), "cntxt": datasets.Value("string"), "dsopp": datasets.Value("string"), "dwipd": datasets.Value("string"), "hdchk": datasets.Value("string"), "katri": datasets.Value("string"), "mulch": datasets.Value("string"), "qxmsq": datasets.Value("string"), "r2ar8": datasets.Value("string"), "reskd": datasets.Value("string"), "reskr": datasets.Value("string"), "rimmx": datasets.Value("string"), "rkxwp": datasets.Value("string"), "rxmsq": datasets.Value("string"), "simpl": datasets.Value("string"), "skach": datasets.Value("string"), "skewr": datasets.Value("string"), "skrxp": datasets.Value("string"), "spcop": datasets.Value("string"), "stlmt": datasets.Value("string"), "thrsk": datasets.Value("string"), "wkcti": datasets.Value("string"), "wkna8": datasets.Value("string"), "wknck": datasets.Value("string"), "wkovl": datasets.Value("string"), "wkpos": datasets.Value("string"), "wtoeg": datasets.Value("string"), "white_wins": datasets.ClassLabel(num_classes=2, names=("no", "yes")) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class ChessConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(ChessConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Chess(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "chess" BUILDER_CONFIGS = [ ChessConfig(name="chess", description="Chess for binary classification.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row