hill / hill.py
mstz's picture
Upload 4 files
dc4d7e5
"""Hill"""
from typing import List
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
DESCRIPTION = "Hill dataset from the UCI ML repository."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Hill"
_URLS = ("https://archive.ics.uci.edu/ml/datasets/Hill")
_CITATION = """
@misc{misc_hill-valley_166,
author = {Graham,Lee & Oppacher,Franz},
title = {{Hill-Valley}},
year = {2008},
howpublished = {UCI Machine Learning Repository},
note = {{DOI}: \\url{10.24432/C5JC8P}}
}"""
# Dataset info
urls_per_split = {
"train": "Hill_Valley_without_noise_Training.data",
"test": "Hill_Valley_without_noise_Testing.data"
}
features_types_per_config = {
"hill": {
"X1": datasets.Value("float64"),
"X2": datasets.Value("float64"),
"X3": datasets.Value("float64"),
"X4": datasets.Value("float64"),
"X5": datasets.Value("float64"),
"X6": datasets.Value("float64"),
"X7": datasets.Value("float64"),
"X8": datasets.Value("float64"),
"X9": datasets.Value("float64"),
"X10": datasets.Value("float64"),
"X11": datasets.Value("float64"),
"X12": datasets.Value("float64"),
"X13": datasets.Value("float64"),
"X14": datasets.Value("float64"),
"X15": datasets.Value("float64"),
"X16": datasets.Value("float64"),
"X17": datasets.Value("float64"),
"X18": datasets.Value("float64"),
"X19": datasets.Value("float64"),
"X20": datasets.Value("float64"),
"X21": datasets.Value("float64"),
"X22": datasets.Value("float64"),
"X23": datasets.Value("float64"),
"X24": datasets.Value("float64"),
"X25": datasets.Value("float64"),
"X26": datasets.Value("float64"),
"X27": datasets.Value("float64"),
"X28": datasets.Value("float64"),
"X29": datasets.Value("float64"),
"X30": datasets.Value("float64"),
"X31": datasets.Value("float64"),
"X32": datasets.Value("float64"),
"X33": datasets.Value("float64"),
"X34": datasets.Value("float64"),
"X35": datasets.Value("float64"),
"X36": datasets.Value("float64"),
"X37": datasets.Value("float64"),
"X38": datasets.Value("float64"),
"X39": datasets.Value("float64"),
"X40": datasets.Value("float64"),
"X41": datasets.Value("float64"),
"X42": datasets.Value("float64"),
"X43": datasets.Value("float64"),
"X44": datasets.Value("float64"),
"X45": datasets.Value("float64"),
"X46": datasets.Value("float64"),
"X47": datasets.Value("float64"),
"X48": datasets.Value("float64"),
"X49": datasets.Value("float64"),
"X50": datasets.Value("float64"),
"X51": datasets.Value("float64"),
"X52": datasets.Value("float64"),
"X53": datasets.Value("float64"),
"X54": datasets.Value("float64"),
"X55": datasets.Value("float64"),
"X56": datasets.Value("float64"),
"X57": datasets.Value("float64"),
"X58": datasets.Value("float64"),
"X59": datasets.Value("float64"),
"X60": datasets.Value("float64"),
"X61": datasets.Value("float64"),
"X62": datasets.Value("float64"),
"X63": datasets.Value("float64"),
"X64": datasets.Value("float64"),
"X65": datasets.Value("float64"),
"X66": datasets.Value("float64"),
"X67": datasets.Value("float64"),
"X68": datasets.Value("float64"),
"X69": datasets.Value("float64"),
"X70": datasets.Value("float64"),
"X71": datasets.Value("float64"),
"X72": datasets.Value("float64"),
"X73": datasets.Value("float64"),
"X74": datasets.Value("float64"),
"X75": datasets.Value("float64"),
"X76": datasets.Value("float64"),
"X77": datasets.Value("float64"),
"X78": datasets.Value("float64"),
"X79": datasets.Value("float64"),
"X80": datasets.Value("float64"),
"X81": datasets.Value("float64"),
"X82": datasets.Value("float64"),
"X83": datasets.Value("float64"),
"X84": datasets.Value("float64"),
"X85": datasets.Value("float64"),
"X86": datasets.Value("float64"),
"X87": datasets.Value("float64"),
"X88": datasets.Value("float64"),
"X89": datasets.Value("float64"),
"X90": datasets.Value("float64"),
"X91": datasets.Value("float64"),
"X92": datasets.Value("float64"),
"X93": datasets.Value("float64"),
"X94": datasets.Value("float64"),
"X95": datasets.Value("float64"),
"X96": datasets.Value("float64"),
"X97": datasets.Value("float64"),
"X98": datasets.Value("float64"),
"X99": datasets.Value("float64"),
"X100": datasets.Value("float64"),
"class": datasets.ClassLabel(num_classes=2)
}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class HillConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(HillConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Hill(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "hill"
BUILDER_CONFIGS = [
HillConfig(name="hill",
description="Hill for binary classification."),
]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloads["test"]}),
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row