Datasets:
Upload 2 files
Browse files- README.md +18 -0
- student_performance.py +8 -12
README.md
CHANGED
@@ -18,3 +18,21 @@ configs:
|
|
18 |
---
|
19 |
# Student performance
|
20 |
The [Student performance dataset](https://www.kaggle.com/datasets/ulrikthygepedersen/student_performances) is cool.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
---
|
19 |
# Student performance
|
20 |
The [Student performance dataset](https://www.kaggle.com/datasets/ulrikthygepedersen/student_performances) is cool.
|
21 |
+
|
22 |
+
# Configurations and tasks
|
23 |
+
- `encoding`, encoding dictionaries mapping binary and ordinal features to their value;
|
24 |
+
- `math` binary classification: has the student passed the math exam?
|
25 |
+
- `writing` binary classification: has the student passed the writing exam?
|
26 |
+
- `reading` binary classification: has the student passed the reading exam?
|
27 |
+
|
28 |
+
# Features
|
29 |
+
|**Feature** |**Type** |
|
30 |
+
|-----------------------------------|-----------|
|
31 |
+
|`sex` |`int8` |
|
32 |
+
|`ethnicity` |`string` |
|
33 |
+
|`parental_level_of_education` |`int8` |
|
34 |
+
|`has_standard_lunch` |`int8` |
|
35 |
+
|`has_completed_preparation_test` |`string` |
|
36 |
+
|`reading_score` |`int64` |
|
37 |
+
|`writing_score` |`int64` |
|
38 |
+
|`math_score` |`int64` |
|
student_performance.py
CHANGED
@@ -130,8 +130,13 @@ class StudentPerformance(datasets.GeneratorBasedBuilder):
|
|
130 |
]
|
131 |
|
132 |
def _generate_examples(self, filepath: str):
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
for row_id, row in data.iterrows():
|
137 |
data_row = dict(row)
|
@@ -139,9 +144,6 @@ class StudentPerformance(datasets.GeneratorBasedBuilder):
|
|
139 |
yield row_id, data_row
|
140 |
|
141 |
def preprocess(self, data: pandas.DataFrame, config: str = "cut") -> pandas.DataFrame:
|
142 |
-
if config == "encoding":
|
143 |
-
return self.encoding_dics()
|
144 |
-
|
145 |
data.columns = _BASE_FEATURE_NAMES
|
146 |
for feature in _ENCODING_DICS:
|
147 |
encoding_function = partial(self.encode, feature)
|
@@ -162,22 +164,16 @@ class StudentPerformance(datasets.GeneratorBasedBuilder):
|
|
162 |
data.loc[:, "has_passed_writing_exam"] = data.has_passed_writing_exam.apply(lambda x: int(x > 60))
|
163 |
|
164 |
return data[list(features_types_per_config["writing"].keys())]
|
165 |
-
|
166 |
-
raise ValueError(f"Unknown config: {config}")
|
167 |
|
168 |
def encode(self, feature, value):
|
169 |
return _ENCODING_DICS[feature][value]
|
170 |
|
171 |
def encoding_dics(self):
|
172 |
-
print("encoding...\n\n\n")
|
173 |
data = [pandas.DataFrame([(feature, original, encoded) for original, encoded in d.items()])
|
174 |
for feature, d in _ENCODING_DICS.items()]
|
175 |
-
print("done...\n\n\n")
|
176 |
data = pandas.concat(data, axis="rows").reset_index()
|
177 |
data.drop("index", axis="columns", inplace=True)
|
178 |
-
print(data)
|
179 |
-
print(data.dtypes)
|
180 |
data.columns = ["feature", "original_value", "encoded_value"]
|
181 |
-
print("done...\n\n\n")
|
182 |
|
183 |
return data
|
|
|
130 |
]
|
131 |
|
132 |
def _generate_examples(self, filepath: str):
|
133 |
+
if self.config.name not in features_types_per_config:
|
134 |
+
raise ValueError(f"Unknown config: {self.config.name}")
|
135 |
+
elif self.config.name == "encoding":
|
136 |
+
data = self.encoding_dics()
|
137 |
+
else:
|
138 |
+
data = pandas.read_csv(filepath)
|
139 |
+
data = self.preprocess(data, config=self.config.name)
|
140 |
|
141 |
for row_id, row in data.iterrows():
|
142 |
data_row = dict(row)
|
|
|
144 |
yield row_id, data_row
|
145 |
|
146 |
def preprocess(self, data: pandas.DataFrame, config: str = "cut") -> pandas.DataFrame:
|
|
|
|
|
|
|
147 |
data.columns = _BASE_FEATURE_NAMES
|
148 |
for feature in _ENCODING_DICS:
|
149 |
encoding_function = partial(self.encode, feature)
|
|
|
164 |
data.loc[:, "has_passed_writing_exam"] = data.has_passed_writing_exam.apply(lambda x: int(x > 60))
|
165 |
|
166 |
return data[list(features_types_per_config["writing"].keys())]
|
167 |
+
|
|
|
168 |
|
169 |
def encode(self, feature, value):
|
170 |
return _ENCODING_DICS[feature][value]
|
171 |
|
172 |
def encoding_dics(self):
|
|
|
173 |
data = [pandas.DataFrame([(feature, original, encoded) for original, encoded in d.items()])
|
174 |
for feature, d in _ENCODING_DICS.items()]
|
|
|
175 |
data = pandas.concat(data, axis="rows").reset_index()
|
176 |
data.drop("index", axis="columns", inplace=True)
|
|
|
|
|
177 |
data.columns = ["feature", "original_value", "encoded_value"]
|
|
|
178 |
|
179 |
return data
|