Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 7,833 Bytes
16f46f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e95551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16f46f0
 
 
 
 
7e95551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
---
language:
- as
- bn
- brx
- doi
- en
- gom
- gu
- hi
- kn
- ks
- mai
- ml
- mr
- mni
- ne
- or
- pa
- sa
- sat
- sd
- ta
- te
- ur
language_details: >-
  asm_Beng, ben_Beng, brx_Deva, doi_Deva, eng_Latn, gom_Deva, guj_Gujr,
  hin_Deva, kan_Knda, kas_Arab, mai_Deva, mal_Mlym, mar_Deva, mni_Mtei, 
  npi_Deva, ory_Orya, pan_Guru, san_Deva, sat_Olck, snd_Deva, tam_Taml, 
  tel_Telu, urd_Arab
license: cc-by-4.0
language_creators:
- expert-generated
multilinguality:
- multilingual
- translation
pretty_name: in22-conv
size_categories:
- 1K<n<10K
task_categories:
- translation
configs:
  - config_name: default
    data_files:
      - split: test
        path: test.parquet
---

# IN22-Conv

IN-22 is a newly created comprehensive benchmark for evaluating machine translation performance in multi-domain, n-way parallel contexts across 22 Indic languages. IN22-Conv is the conversation domain subset of IN22. It is designed to assess translation quality in typical day-to-day conversational-style applications. The evaluation subset consists of 1503 sentences translated across 22 Indic languages enabling evaluation of MT systems across 506 directions.

Currently, we use it for sentence-level evaluation of MT systems but it can be repurposed for document translation evaluation as well.

Here is the domain distribution of our IN22-Conv evaluation subset.

<table style="width:25%">
    <tr>
        <td>domain</td>
        <td>count</td>
    </tr>
    <tr>
        <td>hobbies</td>
        <td>120</td>
    </tr>
    <tr>
        <td>daily_dialogue</td>
        <td>117</td>
    </tr>
    <tr>
        <td>government</td>
        <td>116</td>
    </tr>
    <tr>
        <td>geography</td>
        <td>114</td>
    </tr>
    <tr>
        <td>sports</td>
        <td>100</td>
    </tr>
    <tr>
        <td>entertainment</td>
        <td>97</td>
    </tr>
    <tr>
        <td>history</td>
        <td>97</td>
    </tr>
    <tr>
        <td>legal</td>
        <td>96</td>
    </tr>
    <tr>
        <td>arts</td>
        <td>95</td>
    </tr>
    <tr>
        <td>college_life</td>
        <td>94</td>
    </tr>
    <tr>
        <td>tourism</td>
        <td>91</td>
    </tr>
    <tr>
        <td>school_life</td>
        <td>87</td>
    </tr>
    <tr>
        <td>insurance</td>
        <td>82</td>
    </tr>
    <tr>
        <td>culture</td>
        <td>73</td>
    </tr>
    <tr>
        <td>healthcare</td>
        <td>67</td>
    </tr>
    <tr>
        <td>banking</td>
        <td>57</td>
    </tr>
    <tr>
        <td>total</td>
        <td>1503</td>
    </tr>
</table>

Please refer to the `Appendix E: Dataset Card` of the [preprint](https://arxiv.org/abs/2305.16307) on detailed description of dataset curation, annotation and quality control process.


### Dataset Structure

#### Dataset Fields

- `id`: Row number for the data entry, starting at 1.
- `doc_id`: Unique identifier of the conversation.
- `sent_id`: Unique identifier of the sentence order in each conversation.
- `topic`: The specific topic of the conversation within the domain.
- `domain`: The domain of the conversation.
- `prompt`: The prompt provided to annotators to simulate the conversation.
- `scenario`: The scenario or context in which the conversation takes place.
- `speaker`: The speaker identifier in the conversation.
- `turn`: The turn within the conversation.

#### Data Instances

A sample from the `gen` split for the English language (`eng_Latn` config) is provided below. All configurations have the same structure, and all sentences are aligned across configurations and splits.

```python
{
   "id": 1,
   "doc_id": 0,
   "sent_id": 1,
   "topic": "Festivities",
   "domain": "culture",
   "prompt": "14th April a holiday",
   "scenario": "Historical importance",
   "speaker": 1,
   "turn": 1,
   "sentence": "Mom, let's go for a movie tomorrow."
}
```

When using a hyphenated pairing or using the `all` function, data will be presented as follows:

```python
{
   "id": 1,
   "doc_id": 0,
   "sent_id": 1,
   "topic": "Festivities",
   "domain": "culture",
   "prompt": "14th April a holiday",
   "scenario": "Historical importance",
   "speaker": 1,
   "turn": 1,
   "sentence_eng_Latn": "Mom, let's go for a movie tomorrow.",
   "sentence_hin_Deva": "माँ, चलो कल एक फिल्म देखने चलते हैं।"
}
```

#### Sample Conversation

<table>
    <tr>
        <td>Speaker</td>
        <td>Turn</td>
    </tr>
    <tr>
        <td>Speaker 1</td>
        <td>Mom, let&#39;s go for a movie tomorrow. I don&#39;t have to go to school. It is a holiday.</td>
    </tr>
    <tr>
        <td>Speaker 2</td>
        <td>Oh, tomorrow is the 14th of April right? Your dad will also have the day off from work. We can make a movie plan!</td>
    </tr>
    <tr>
        <td>Speaker 1</td>
        <td>That&#39;s a good news! Why is it a holiday though? Are all schools, colleges and offices closed tomorrow?</td>
    </tr>
    <tr>
        <td>Speaker 2</td>
        <td>It is Ambedkar Jayanti tomorrow! This day is celebrated annually to mark the birth of Dr. B. R Ambedkar. Have you heard of him?</td>
    </tr>
    <tr>
        <td>Speaker 1</td>
        <td>I think I have seen him in my History and Civics book. Is he related to our Constitution?</td>
    </tr>
    <tr>
        <td>Speaker 2</td>
        <td>Absolutely! He is known as the father of the Indian Constitution. He was a civil rights activist who played a major role in formulating the Constitution. He played a crucial part in shaping the vibrant democratic structure that India prides itself upon.</td>
    </tr>
    <tr>
        <td></td>
        <td>...</td>
    </tr>
</table>


### Usage Instructions

```python
from datasets import load_dataset

# download and load all the pairs
dataset = load_dataset("ai4bharat/IN22-Conv", "all")

# download and load specific pairs
dataset = load_dataset("ai4bharat/IN22-Conv", "eng_Latn-hin_Deva")
```

### Languages Covered

<table style="width: 40%">
    <tr>
        <td>Assamese (asm_Beng)</td>
        <td>Kashmiri (Arabic) (kas_Arab)</td>
        <td>Punjabi (pan_Guru)</td>
    </tr>
    <tr>
        <td>Bengali (ben_Beng)</td>
        <td>Kashmiri (Devanagari) (kas_Deva)</td>
        <td>Sanskrit (san_Deva)</td>
    </tr>
    <tr>
        <td>Bodo (brx_Deva)</td>
        <td>Maithili (mai_Deva)</td>
        <td>Santali (sat_Olck)</td>
    </tr>
    <tr>
        <td>Dogri (doi_Deva)</td>
        <td>Malayalam (mal_Mlym)</td>
        <td>Sindhi (Arabic) (snd_Arab)</td>
    </tr>
    <tr>
        <td>English (eng_Latn)</td>
        <td>Marathi (mar_Deva)</td>
        <td>Sindhi (Devanagari) (snd_Deva)</td>
    </tr>
    <tr>
        <td>Konkani (gom_Deva)</td>
        <td>Manipuri (Bengali) (mni_Beng)</td>
        <td>Tamil (tam_Taml)</td>
    </tr>
    <tr>
        <td>Gujarati (guj_Gujr)</td>
        <td>Manipuri (Meitei) (mni_Mtei)</td>
        <td>Telugu (tel_Telu)</td>
    </tr>
    <tr>
        <td>Hindi (hin_Deva)</td>
        <td>Nepali (npi_Deva)</td>
        <td>Urdu (urd_Arab)</td>
    </tr>
    <tr>
        <td>Kannada (kan_Knda)</td>
        <td>Odia (ory_Orya)</td>
    </tr>
</table>


### Citation

If you consider using our work then please cite using:

```
@article{gala2023indictrans,
title={IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages},
author={Jay Gala and Pranjal A Chitale and A K Raghavan and Varun Gumma and Sumanth Doddapaneni and Aswanth Kumar M and Janki Atul Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M Khapra and Raj Dabre and Anoop Kunchukuttan},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2023},
url={https://openreview.net/forum?id=vfT4YuzAYA},
note={}
}
```