RAG-accelerate / src /big_modeling.py
muellerzr's picture
muellerzr HF staff
Try again?
7a76c8f
logger = logging.getLogger(__name__)
@contextmanager
def init_empty_weights(include_buffers: bool = None):
"""
A context manager under which models are initialized with all parameters on the meta device, therefore creating an
empty model. Useful when just initializing the model would blow the available RAM.
Args:
include_buffers (`bool`, *optional*):
Whether or not to also put all buffers on the meta device while initializing.
Example:
```python
import torch.nn as nn
from accelerate import init_empty_weights
# Initialize a model with 100 billions parameters in no time and without using any RAM.
with init_empty_weights():
tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
```
<Tip warning={true}>
Any model created under this context manager has no weights. As such you can't do something like
`model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
</Tip>
"""
if include_buffers is None:
include_buffers = parse_flag_from_env("ACCELERATE_INIT_INCLUDE_BUFFERS", False)
with init_on_device(torch.device("meta"), include_buffers=include_buffers) as f:
yield f
@contextmanager
def init_on_device(device: torch.device, include_buffers: bool = None):
"""
A context manager under which models are initialized with all parameters on the specified device.
Args:
device (`torch.device`):
Device to initialize all parameters on.
include_buffers (`bool`, *optional*):
Whether or not to also put all buffers on the meta device while initializing.
Example:
```python
import torch.nn as nn
from accelerate import init_on_device
with init_on_device(device=torch.device("cuda")):
tst = nn.Liner(100, 100) # on `cuda` device
```
"""
if include_buffers is None:
include_buffers = parse_flag_from_env("ACCELERATE_INIT_INCLUDE_BUFFERS", False)
# TODO(shingjan): remove the torch version check once older versions are deprecated
if is_torch_version(">=", "2.0") and include_buffers:
with device:
yield
return
old_register_parameter = nn.Module.register_parameter
if include_buffers:
old_register_buffer = nn.Module.register_buffer
def register_empty_parameter(module, name, param):
old_register_parameter(module, name, param)
if param is not None:
param_cls = type(module._parameters[name])
kwargs = module._parameters[name].__dict__
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
def register_empty_buffer(module, name, buffer, persistent=True):
old_register_buffer(module, name, buffer, persistent=persistent)
if buffer is not None:
module._buffers[name] = module._buffers[name].to(device)
# Patch tensor creation
if include_buffers:
tensor_constructors_to_patch = {
torch_function_name: getattr(torch, torch_function_name)
for torch_function_name in ["empty", "zeros", "ones", "full"]
}
else:
tensor_constructors_to_patch = {}
def patch_tensor_constructor(fn):
def wrapper(*args, **kwargs):
kwargs["device"] = device
return fn(*args, **kwargs)
return wrapper
try:
nn.Module.register_parameter = register_empty_parameter
if include_buffers:
nn.Module.register_buffer = register_empty_buffer
for torch_function_name in tensor_constructors_to_patch.keys():
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
yield
finally:
nn.Module.register_parameter = old_register_parameter
if include_buffers:
nn.Module.register_buffer = old_register_buffer
for torch_function_name, old_torch_function in tensor_constructors_to_patch.items():
setattr(torch, torch_function_name, old_torch_function)
def cpu_offload(
model: nn.Module,
execution_device: Optional[torch.device] = None,
offload_buffers: bool = False,
state_dict: Optional[Dict[str, torch.Tensor]] = None,
preload_module_classes: Optional[List[str]] = None,
):
"""
Activates full CPU offload for a model. As a result, all parameters of the model will be offloaded and only one
copy of the state dict of the model will be kept. During the forward pass, parameters will be extracted from that
state dict and put on the execution device passed as they are needed, then offloaded again.
Args:
model (`torch.nn.Module`):
The model to offload.
execution_device (`torch.device`, *optional*):
The device on which the forward pass of the model will be executed (should be a GPU). Will default to the
model first parameter device.
offload_buffers (`bool`, *optional*, defaults to `False`):
Whether or not to offload the buffers with the model parameters.
state_dict (`Dict[str, torch.Tensor]`, *optional*):
The state dict of the model that will be kept on CPU.
preload_module_classes (`List[str]`, *optional*):
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
of the forward. This should only be used for classes that have submodules which are registered but not
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
"""
if execution_device is None:
execution_device = next(iter(model.parameters())).device
if state_dict is None:
state_dict = {n: p.to("cpu") for n, p in model.state_dict().items()}
add_hook_to_module(model, AlignDevicesHook(io_same_device=True), append=True)
attach_align_device_hook(
model,
execution_device=execution_device,
offload=True,
offload_buffers=offload_buffers,
weights_map=state_dict,
preload_module_classes=preload_module_classes,
)
return model
def cpu_offload_with_hook(
model: torch.nn.Module,
execution_device: Optional[Union[int, str, torch.device]] = None,
prev_module_hook: Optional[UserCpuOffloadHook] = None,
):
"""
Offloads a model on the CPU and puts it back to an execution device when executed. The difference with
[`cpu_offload`] is that the model stays on the execution device after the forward and is only offloaded again when
the `offload` method of the returned `hook` is called. Useful for pipelines running a model in a loop.
Args:
model (`torch.nn.Module`):
The model to offload.
execution_device(`str`, `int` or `torch.device`, *optional*):
The device on which the model should be executed. Will default to the MPS device if it's available, then
GPU 0 if there is a GPU, and finally to the CPU.
prev_module_hook (`UserCpuOffloadHook`, *optional*):
The hook sent back by this function for a previous model in the pipeline you are running. If passed, its
offload method will be called just before the forward of the model to which this hook is attached.
Example:
```py
model_1, hook_1 = cpu_offload_with_hook(model_1, cuda_device)
model_2, hook_2 = cpu_offload_with_hook(model_2, cuda_device, prev_module_hook=hook_1)
model_3, hook_3 = cpu_offload_with_hook(model_3, cuda_device, prev_module_hook=hook_2)
hid_1 = model_1(input)
for i in range(50):
# model1 is offloaded on the CPU at the first iteration, model 2 stays on the GPU for this whole loop.
hid_2 = model_2(hid_1)
# model2 is offloaded to the CPU just before this forward.
hid_3 = model_3(hid_3)
# For model3, you need to manually call the hook offload method.
hook_3.offload()
```
"""
hook = CpuOffload(execution_device=execution_device, prev_module_hook=prev_module_hook)
add_hook_to_module(model, hook, append=True)
user_hook = UserCpuOffloadHook(model, hook)
return model, user_hook
def disk_offload(
model: nn.Module,
offload_dir: Union[str, os.PathLike],
execution_device: Optional[torch.device] = None,
offload_buffers: bool = False,
preload_module_classes: Optional[List[str]] = None,
):
"""
Activates full disk offload for a model. As a result, all parameters of the model will be offloaded as
memory-mapped array in a given folder. During the forward pass, parameters will be accessed from that folder and
put on the execution device passed as they are needed, then offloaded again.
Args:
model (`torch.nn.Module`): The model to offload.
offload_dir (`str` or `os.PathLike`):
The folder in which to offload the model weights (or where the model weights are already offloaded).
execution_device (`torch.device`, *optional*):
The device on which the forward pass of the model will be executed (should be a GPU). Will default to the
model's first parameter device.
offload_buffers (`bool`, *optional*, defaults to `False`):
Whether or not to offload the buffers with the model parameters.
preload_module_classes (`List[str]`, *optional*):
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
of the forward. This should only be used for classes that have submodules which are registered but not
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
"""
if not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_dir, "index.json")):
offload_state_dict(offload_dir, model.state_dict())
if execution_device is None:
execution_device = next(iter(model.parameters())).device
weights_map = OffloadedWeightsLoader(save_folder=offload_dir)
add_hook_to_module(model, AlignDevicesHook(io_same_device=True), append=True)
attach_align_device_hook(
model,
execution_device=execution_device,
offload=True,
offload_buffers=offload_buffers,
weights_map=weights_map,
preload_module_classes=preload_module_classes,
)
return model
def dispatch_model(
model: nn.Module,
device_map: Dict[str, Union[str, int, torch.device]],
main_device: Optional[torch.device] = None,
state_dict: Optional[Dict[str, torch.Tensor]] = None,
offload_dir: Optional[Union[str, os.PathLike]] = None,
offload_index: Optional[Dict[str, str]] = None,
offload_buffers: bool = False,
skip_keys: Optional[Union[str, List[str]]] = None,
preload_module_classes: Optional[List[str]] = None,
force_hooks: bool = False,
):
"""
Dispatches a model according to a given device map. Layers of the model might be spread across GPUs, offloaded on
the CPU or even the disk.
Args:
model (`torch.nn.Module`):
The model to dispatch.
device_map (`Dict[str, Union[str, int, torch.device]]`):
A dictionary mapping module names in the models `state_dict` to the device they should go to. Note that
`"disk"` is accepted even if it's not a proper value for `torch.device`.
main_device (`str`, `int` or `torch.device`, *optional*):
The main execution device. Will default to the first device in the `device_map` different from `"cpu"` or
`"disk"`.
state_dict (`Dict[str, torch.Tensor]`, *optional*):
The state dict of the part of the model that will be kept on CPU.
offload_dir (`str` or `os.PathLike`):
The folder in which to offload the model weights (or where the model weights are already offloaded).
offload_index (`Dict`, *optional*):
A dictionary from weight name to their information (`dtype`/ `shape` or safetensors filename). Will default
to the index saved in `save_folder`.
offload_buffers (`bool`, *optional*, defaults to `False`):
Whether or not to offload the buffers with the model parameters.
skip_keys (`str` or `List[str]`, *optional*):
A list of keys to ignore when moving inputs or outputs between devices.
preload_module_classes (`List[str]`, *optional*):
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
of the forward. This should only be used for classes that have submodules which are registered but not
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
force_hooks (`bool`, *optional*, defaults to `False`):
Whether or not to force device hooks to be attached to the model even if all layers are dispatched to a
single device.
"""
# Error early if the device map is incomplete.
check_device_map(model, device_map)
# for backward compatibility
is_bnb_quantized = (
getattr(model, "is_quantized", False) or getattr(model, "is_loaded_in_8bit", False)
) and getattr(model, "quantization_method", "bitsandbytes") == "bitsandbytes"
# We attach hooks if the device_map has at least 2 different devices or if
# force_hooks is set to `True`. Otherwise, the model in already loaded
# in the unique device and the user can decide where to dispatch the model.
# If the model is quantized, we always force-dispatch the model
if (len(set(device_map.values())) > 1) or is_bnb_quantized or force_hooks:
if main_device is None:
if set(device_map.values()) == {"cpu"} or set(device_map.values()) == {"cpu", "disk"}:
main_device = "cpu"
else:
main_device = [d for d in device_map.values() if d not in ["cpu", "disk"]][0]
if main_device != "cpu":
cpu_modules = [name for name, device in device_map.items() if device == "cpu"]
if state_dict is None and len(cpu_modules) > 0:
state_dict = extract_submodules_state_dict(model.state_dict(), cpu_modules)
disk_modules = [name for name, device in device_map.items() if device == "disk"]
if offload_dir is None and offload_index is None and len(disk_modules) > 0:
raise ValueError(
"We need an `offload_dir` to dispatch this model according to this `device_map`, the following submodules "
f"need to be offloaded: {', '.join(disk_modules)}."
)
if (
len(disk_modules) > 0
and offload_index is None
and (not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_dir, "index.json")))
):
disk_state_dict = extract_submodules_state_dict(model.state_dict(), disk_modules)
offload_state_dict(offload_dir, disk_state_dict)
execution_device = {
name: main_device if device in ["cpu", "disk"] else device for name, device in device_map.items()
}
execution_device[""] = main_device
offloaded_devices = ["disk"] if main_device == "cpu" or main_device == "mps" else ["cpu", "disk"]
offload = {name: device in offloaded_devices for name, device in device_map.items()}
save_folder = offload_dir if len(disk_modules) > 0 else None
if state_dict is not None or save_folder is not None or offload_index is not None:
device = main_device if offload_index is not None else None
weights_map = OffloadedWeightsLoader(
state_dict=state_dict, save_folder=save_folder, index=offload_index, device=device
)
else:
weights_map = None
tied_params = find_tied_parameters(model)
attach_align_device_hook_on_blocks(
model,
execution_device=execution_device,
offload=offload,
offload_buffers=offload_buffers,
weights_map=weights_map,
skip_keys=skip_keys,
preload_module_classes=preload_module_classes,
)
# warn if there is any params on the meta device
offloaded_devices_str = " and ".join(
[device for device in set(device_map.values()) if device in ("cpu", "disk")]
)
if len(offloaded_devices_str) > 0:
logging.warning(
f"Some parameters are on the meta device device because they were offloaded to the {offloaded_devices_str}."
)
# Attaching the hook may break tied weights, so we retie them
retie_parameters(model, tied_params)
# add warning to cuda and to method
def add_warning(fn, model):
@wraps(fn)
def wrapper(*args, **kwargs):
logger.warning("You shouldn't move a model when it is dispatched on multiple devices.")
for param in model.parameters():
if param.device == torch.device("meta"):
raise RuntimeError("You can't move a model that has some modules offloaded to cpu or disk.")
return fn(*args, **kwargs)
return wrapper
model.to = add_warning(model.to, model)
if is_npu_available():
model.npu = add_warning(model.npu, model)
else:
model.cuda = add_warning(model.cuda, model)
else:
device = list(device_map.values())[0]
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
if is_npu_available() and isinstance(device, int):
device = f"npu:{device}"
if device != "disk":
model.to(device)
else:
raise ValueError(
"You are trying to offload the whole model to the disk. Please use the `disk_offload` function instead."
)
model.hf_device_map = device_map
return model
def load_checkpoint_and_dispatch(
model: nn.Module,
checkpoint: Union[str, os.PathLike],
device_map: Optional[Union[str, Dict[str, Union[int, str, torch.device]]]] = None,
max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None,
no_split_module_classes: Optional[List[str]] = None,
offload_folder: Optional[Union[str, os.PathLike]] = None,
offload_buffers: bool = False,
dtype: Optional[Union[str, torch.dtype]] = None,
offload_state_dict: Optional[bool] = None,
skip_keys: Optional[Union[str, List[str]]] = None,
preload_module_classes: Optional[List[str]] = None,
force_hooks: bool = False,
):
"""
Loads a (potentially sharded) checkpoint inside a model, potentially sending weights to a given device as they are
loaded and adds the various hooks that will make this model run properly (even if split across devices).
Args:
model (`torch.nn.Module`): The model in which we want to load a checkpoint.
checkpoint (`str` or `os.PathLike`):
The folder checkpoint to load. It can be:
- a path to a file containing a whole model state dict
- a path to a `.json` file containing the index to a sharded checkpoint
- a path to a folder containing a unique `.index.json` file and the shards of a checkpoint.
device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer
name, once a given module name is inside, every submodule of it will be sent to the same device.
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For more
information about each option see [here](big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each GPU
and the available CPU RAM if unset.
no_split_module_classes (`List[str]`, *optional*):
A list of layer class names that should never be split across device (for instance any layer that has a
residual connection).
offload_folder (`str` or `os.PathLike`, *optional*):
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
offload_buffers (`bool`, *optional*, defaults to `False`):
In the layers that are offloaded on the CPU or the hard drive, whether or not to offload the buffers as
well as the parameters.
dtype (`str` or `torch.dtype`, *optional*):
If provided, the weights will be converted to that type when loaded.
offload_state_dict (`bool`, *optional*):
If `True`, will temporarily offload the CPU state dict on the hard drive to avoid getting out of CPU RAM if
the weight of the CPU state dict + the biggest shard does not fit. Will default to `True` if the device map
picked contains `"disk"` values.
skip_keys (`str` or `List[str]`, *optional*):
A list of keys to ignore when moving inputs or outputs between devices.
preload_module_classes (`List[str]`, *optional*):
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
of the forward. This should only be used for classes that have submodules which are registered but not
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
force_hooks (`bool`, *optional*, defaults to `False`):
Whether or not to force device hooks to be attached to the model even if all layers are dispatched to a
single device.
Example:
```python
>>> from accelerate import init_empty_weights, load_checkpoint_and_dispatch
>>> from huggingface_hub import hf_hub_download
>>> from transformers import AutoConfig, AutoModelForCausalLM
>>> # Download the Weights
>>> checkpoint = "EleutherAI/gpt-j-6B"
>>> weights_location = hf_hub_download(checkpoint, "pytorch_model.bin")
>>> # Create a model and initialize it with empty weights
>>> config = AutoConfig.from_pretrained(checkpoint)
>>> with init_empty_weights():
... model = AutoModelForCausalLM.from_config(config)
>>> # Load the checkpoint and dispatch it to the right devices
>>> model = load_checkpoint_and_dispatch(
... model, weights_location, device_map="auto", no_split_module_classes=["GPTJBlock"]
... )
```
"""
if isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
"If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
"'sequential'."
)
if isinstance(device_map, str):
if device_map != "sequential":
max_memory = get_balanced_memory(
model,
max_memory=max_memory,
no_split_module_classes=no_split_module_classes,
dtype=dtype,
low_zero=(device_map == "balanced_low_0"),
)
device_map = infer_auto_device_map(
model, max_memory=max_memory, no_split_module_classes=no_split_module_classes, dtype=dtype
)
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
offload_state_dict = True
load_checkpoint_in_model(
model,
checkpoint,
device_map=device_map,
offload_folder=offload_folder,
dtype=dtype,
offload_state_dict=offload_state_dict,
offload_buffers=offload_buffers,
)
if device_map is None:
return model
return dispatch_model(
model,
device_map=device_map,
offload_dir=offload_folder,
offload_buffers=offload_buffers,
skip_keys=skip_keys,
preload_module_classes=preload_module_classes,
force_hooks=force_hooks,
)