muellerzr's picture
muellerzr HF Staff
Remove whitespace
ecb9f74
#!/usr/bin/env python
description = "Create a default config file for Accelerate with only a few flags set."
def write_basic_config(mixed_precision="no", save_location: str = default_json_config_file, use_xpu: bool = False):
"""
Creates and saves a basic cluster config to be used on a local machine with potentially multiple GPUs. Will also
set CPU if it is a CPU-only machine.
Args:
mixed_precision (`str`, *optional*, defaults to "no"):
Mixed Precision to use. Should be one of "no", "fp16", or "bf16"
save_location (`str`, *optional*, defaults to `default_json_config_file`):
Optional custom save location. Should be passed to `--config_file` when using `accelerate launch`. Default
location is inside the huggingface cache folder (`~/.cache/huggingface`) but can be overriden by setting
the `HF_HOME` environmental variable, followed by `accelerate/default_config.yaml`.
use_xpu (`bool`, *optional*, defaults to `False`):
Whether to use XPU if available.
"""
path = Path(save_location)
path.parent.mkdir(parents=True, exist_ok=True)
if path.exists():
print(
f"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`."
)
return False
mixed_precision = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
f"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}"
)
config = {
"compute_environment": "LOCAL_MACHINE",
"mixed_precision": mixed_precision,
}
if torch.cuda.is_available():
num_gpus = torch.cuda.device_count()
config["num_processes"] = num_gpus
config["use_cpu"] = False
if num_gpus > 1:
config["distributed_type"] = "MULTI_GPU"
else:
config["distributed_type"] = "NO"
elif is_xpu_available() and use_xpu:
num_xpus = torch.xpu.device_count()
config["num_processes"] = num_xpus
config["use_cpu"] = False
if num_xpus > 1:
config["distributed_type"] = "MULTI_XPU"
else:
config["distributed_type"] = "NO"
elif is_npu_available():
num_npus = torch.npu.device_count()
config["num_processes"] = num_npus
config["use_cpu"] = False
if num_npus > 1:
config["distributed_type"] = "MULTI_NPU"
else:
config["distributed_type"] = "NO"
else:
num_xpus = 0
config["use_cpu"] = True
config["num_processes"] = 1
config["distributed_type"] = "NO"
config["debug"] = False
config = ClusterConfig(**config)
config.to_json_file(path)
return path
def default_command_parser(parser, parents):
parser = parser.add_parser("default", parents=parents, help=description, formatter_class=SubcommandHelpFormatter)
parser.add_argument(
"--config_file",
default=default_json_config_file,
help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
),
dest="save_location",
)
parser.add_argument(
"--mixed_precision",
choices=["no", "fp16", "bf16"],
type=str,
help="Whether or not to use mixed precision training. "
"Choose between FP16 and BF16 (bfloat16) training. "
"BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.",
default="no",
)
parser.set_defaults(func=default_config_command)
return parser
def default_config_command(args):
config_file = write_basic_config(args.mixed_precision, args.save_location)
if config_file:
print(f"accelerate configuration saved at {config_file}")