|
logger = get_logger(__name__) |
|
if is_tpu_available(check_device=False): |
|
import torch_xla.core.xla_model as xm |
|
def is_compiled_module(module): |
|
""" |
|
Check whether the module was compiled with torch.compile() |
|
""" |
|
if is_torch_version("<", "2.0.0") or not hasattr(torch, "_dynamo"): |
|
return False |
|
return isinstance(module, torch._dynamo.eval_frame.OptimizedModule) |
|
def extract_model_from_parallel(model, keep_fp32_wrapper: bool = True): |
|
""" |
|
Extract a model from its distributed containers. |
|
Args: |
|
model (`torch.nn.Module`): |
|
The model to extract. |
|
keep_fp32_wrapper (`bool`, *optional*): |
|
Whether to remove mixed precision hooks from the model. |
|
Returns: |
|
`torch.nn.Module`: The extracted model. |
|
""" |
|
options = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) |
|
is_compiled = is_compiled_module(model) |
|
if is_compiled: |
|
compiled_model = model |
|
model = model._orig_mod |
|
if is_deepspeed_available(): |
|
from deepspeed import DeepSpeedEngine |
|
options += (DeepSpeedEngine,) |
|
if is_torch_version(">=", FSDP_PYTORCH_VERSION) and is_torch_distributed_available(): |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP |
|
options += (FSDP,) |
|
while isinstance(model, options): |
|
model = model.module |
|
if not keep_fp32_wrapper: |
|
forward = getattr(model, "forward") |
|
original_forward = model.__dict__.pop("_original_forward", None) |
|
if original_forward is not None: |
|
while hasattr(forward, "__wrapped__"): |
|
forward = forward.__wrapped__ |
|
if forward == original_forward: |
|
break |
|
model.forward = MethodType(forward, model) |
|
if getattr(model, "_converted_to_transformer_engine", False): |
|
convert_model(model, to_transformer_engine=False) |
|
if is_compiled: |
|
compiled_model._orig_mod = model |
|
model = compiled_model |
|
return model |
|
def wait_for_everyone(): |
|
""" |
|
Introduces a blocking point in the script, making sure all processes have reached this point before continuing. |
|
<Tip warning={true}> |
|
Make sure all processes will reach this instruction otherwise one of your processes will hang forever. |
|
</Tip> |
|
""" |
|
PartialState().wait_for_everyone() |
|
def clean_state_dict_for_safetensors(state_dict: dict): |
|
""" |
|
Cleans the state dictionary from a model and removes tensor aliasing if present. |
|
Args: |
|
state_dict (`dict`): |
|
The state dictionary from a model |
|
""" |
|
ptrs = collections.defaultdict(list) |
|
|
|
for name, tensor in state_dict.items(): |
|
if not isinstance(tensor, str): |
|
ptrs[id_tensor_storage(tensor)].append(name) |
|
|
|
shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1} |
|
warn_names = set() |
|
for names in shared_ptrs.values(): |
|
|
|
|
|
|
|
|
|
|
|
found_names = [name for name in names if name in state_dict] |
|
warn_names.update(found_names[1:]) |
|
for name in found_names[1:]: |
|
del state_dict[name] |
|
if len(warn_names) > 0: |
|
logger.warning( |
|
f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading", |
|
) |
|
state_dict = {k: v.contiguous() if isinstance(v, torch.Tensor) else v for k, v in state_dict.items()} |
|
return state_dict |
|
def save(obj, f, save_on_each_node: bool = False, safe_serialization: bool = False): |
|
""" |
|
Save the data to disk. Use in place of `torch.save()`. |
|
Args: |
|
obj: |
|
The data to save |
|
f: |
|
The file (or file-like object) to use to save the data |
|
save_on_each_node (`bool`, *optional*, defaults to `False`): |
|
Whether to only save on the global main process |
|
safe_serialization (`bool`, *optional*, defaults to `False`): |
|
Whether to save `obj` using `safetensors` or the traditional PyTorch way (that uses `pickle`). |
|
""" |
|
|
|
if safe_serialization: |
|
save_func = partial(safe_save_file, metadata={"format": "pt"}) |
|
if isinstance(obj, OrderedDict): |
|
obj = clean_state_dict_for_safetensors(obj) |
|
else: |
|
save_func = torch.save |
|
if PartialState().distributed_type == DistributedType.TPU: |
|
xm.save(obj, f) |
|
elif PartialState().is_main_process and not save_on_each_node: |
|
save_func(obj, f) |
|
elif PartialState().is_local_main_process and save_on_each_node: |
|
save_func(obj, f) |
|
@contextmanager |
|
def clear_environment(): |
|
""" |
|
A context manager that will cache origin `os.environ` and replace it with a empty dictionary in this context. |
|
When this context exits, the cached `os.environ` will be back. |
|
Example: |
|
```python |
|
>>> import os |
|
>>> from accelerate.utils import clear_environment |
|
>>> os.environ["FOO"] = "bar" |
|
>>> with clear_environment(): |
|
... print(os.environ) |
|
... os.environ["FOO"] = "new_bar" |
|
... print(os.environ["FOO"]) |
|
{} |
|
new_bar |
|
>>> print(os.environ["FOO"]) |
|
bar |
|
``` |
|
""" |
|
_old_os_environ = os.environ |
|
os.environ = dict() |
|
yield |
|
os.environ = _old_os_environ |
|
@contextmanager |
|
def patch_environment(**kwargs): |
|
""" |
|
A context manager that will add each keyword argument passed to `os.environ` and remove them when exiting. |
|
Will convert the values in `kwargs` to strings and upper-case all the keys. |
|
Example: |
|
```python |
|
>>> import os |
|
>>> from accelerate.utils import patch_environment |
|
>>> with patch_environment(FOO="bar"): |
|
... print(os.environ["FOO"]) # prints "bar" |
|
>>> print(os.environ["FOO"]) # raises KeyError |
|
``` |
|
""" |
|
existing_vars = {} |
|
for key, value in kwargs.items(): |
|
key = key.upper() |
|
if key in os.environ: |
|
existing_vars[key] = os.environ[key] |
|
os.environ[key] = str(value) |
|
yield |
|
for key in kwargs: |
|
key = key.upper() |
|
if key in existing_vars: |
|
|
|
os.environ[key] = existing_vars[key] |
|
else: |
|
os.environ.pop(key, None) |
|
def get_pretty_name(obj): |
|
""" |
|
Gets a pretty name from `obj`. |
|
""" |
|
if not hasattr(obj, "__qualname__") and not hasattr(obj, "__name__"): |
|
obj = getattr(obj, "__class__", obj) |
|
if hasattr(obj, "__qualname__"): |
|
return obj.__qualname__ |
|
if hasattr(obj, "__name__"): |
|
return obj.__name__ |
|
return str(obj) |
|
def merge_dicts(source, destination): |
|
""" |
|
Recursively merges two dictionaries. |
|
Args: |
|
source (`dict`): The dictionary to merge into `destination`. |
|
destination (`dict`): The dictionary to merge `source` into. |
|
""" |
|
for key, value in source.items(): |
|
if isinstance(value, dict): |
|
node = destination.setdefault(key, {}) |
|
merge_dicts(value, node) |
|
else: |
|
destination[key] = value |
|
return destination |
|
def is_port_in_use(port: int = None) -> bool: |
|
""" |
|
Checks if a port is in use on `localhost`. Useful for checking if multiple `accelerate launch` commands have been |
|
run and need to see if the port is already in use. |
|
""" |
|
if port is None: |
|
port = 29500 |
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: |
|
return s.connect_ex(("localhost", port)) == 0 |
|
def convert_bytes(size): |
|
"Converts `size` from bytes to the largest possible unit" |
|
for x in ["bytes", "KB", "MB", "GB", "TB"]: |
|
if size < 1024.0: |
|
return f"{round(size, 2)} {x}" |
|
size /= 1024.0 |
|
return f"{round(size, 2)} PB" |
|
def check_os_kernel(): |
|
"""Warns if the kernel version is below the recommended minimum on Linux.""" |
|
|
|
info = platform.uname() |
|
system = info.system |
|
if system != "Linux": |
|
return |
|
_, version, *_ = re.split(r"(\d+\.\d+\.\d+)", info.release) |
|
min_version = "5.5.0" |
|
if Version(version) < Version(min_version): |
|
msg = ( |
|
f"Detected kernel version {version}, which is below the recommended minimum of {min_version}; this can " |
|
"cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher." |
|
) |
|
logger.warning(msg, main_process_only=True) |
|
|