Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 28,195 Bytes
5b23881
 
 
 
 
7053568
5b23881
 
7053568
5b23881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
"""
process_underscores.py

Script to handle licensed data for which underlying text cannot be posted online (e.g. LDC data).
Users need a copy of the LDC distribution of an underlying resource to restore text in some of the corpora.
python process_underscores.py gum --rel_files /root/.cache/huggingface/datasets/downloads/a59f7db26e03978a86f53aa481af30f68699dde7ff4782562a18f81d33a10c63 --dep_files /root/.cache/huggingface/datasets/downloads/afbcb3a0d2a43e55d1437c7ba2843486c747c79d486de7ceac566a8e959d59e2
"""

__author__ = "Amir Zeldes+Damien Sileo"
__license__ = "Apache 2.0"
__version__ = "2.0.0"

import io, re, os, sys
from glob import glob
from collections import defaultdict
from argparse import ArgumentParser

PY3 = sys.version_info[0] == 3
if not PY3:
	input = raw_input


gum_docs = {
	"GUM_reddit_macroeconomics": [
		{"year": "2017", "month": "09", "id": "6zm74h", "type": "post","source":"undef"},
		{"year": "2017", "month": "09", "id": "dmwwqlt", "type":"comment","source":"undef"}
	],
	"GUM_reddit_stroke": [
		{"year": "2017", "month": "08", "id": "6ws3eh", "type": "post","source":"undef"},
		{"year": "2017", "month": "08", "id": "dmaei1x", "type":"comment","source":"undef"},
		{"year": "2017", "month": "08", "id": "dmaiwsm", "type":"comment","source":"undef"},
		{"year": "2017", "month": "09", "id": "dmkx8bk", "type":"comment","source":"undef"},
		{"year": "2017", "month": "09", "id": "dmm1327", "type":"comment","source":"undef"},
		{"year": "2017", "month": "08", "id": "dmaoodn", "type":"comment","source":"undef"}
	],
	"GUM_reddit_polygraph": [
		{"year": "2014", "month": "12", "id": "2q6qnv", "type": "post","source":"undef"}
	],
	"GUM_reddit_ring": [
		{"year": "2016", "month": "09", "id": "5570x1", "type": "post","source":"undef"},
		{"year": "2016", "month": "09", "id": "d885ma0", "type":"comment","source":"undef"},
		{"year": "2016", "month": "09", "id": "d8880w7", "type":"comment","source":"undef"},
		{"year": "2016", "month": "09", "id": "d88u7dg", "type":"comment","source":"undef"},
		{"year": "2016", "month": "09", "id": "d88unu3", "type":"comment","source":"undef"},
		{"year": "2016", "month": "09", "id": "d88v0sz", "type":"comment","source":"undef"},
		{"year": "2016", "month": "09", "id": "d88xaqu", "type":"comment","source":"undef"},
		{"year": "2016", "month": "10", "id": "d893mj9", "type":"comment","source":"undef"},
		{"year": "2016", "month": "09", "id": "d88s4bb", "type":"comment","source":"undef"},
		{"year": "2016", "month": "10", "id": "d88zt6x", "type":"comment","source":"undef"}
	],
	"GUM_reddit_space": [
		{"year": "2016", "month": "08", "id": "50hx5c", "type": "post","source":"undef"},
		{"year": "2016", "month": "08", "id": "d7471k5", "type":"comment","source":"undef"},
		{"year": "2016", "month": "08", "id": "d74i5ka", "type":"comment","source":"undef"},
		{"year": "2016", "month": "08", "id": "d74ppi0", "type":"comment","source":"undef"}
	],
	"GUM_reddit_superman": [
		#{"year": "2017", "month": "04", "id": "68e0u3", "type": "post", "title_only": True},  # Post title not included in this document
		{"year": "2017", "month": "05", "id": "dgys1z8", "type":"comment","source":"undef"}
	],
	"GUM_reddit_bobby": [
		{"year":"2018","month":"06","id":"8ph56q","type": "post","source":"undef"},
		{"year":"2018","month":"06","id":"e0b8zz4","type":"comment","source":"undef"},
		{"year":"2018","month":"06","id":"e0dwqlg","type":"comment","source":"undef"},
		{"year":"2018","month":"06","id":"e15pcqu","type":"comment","source":"undef"},
		{"year":"2018","month":"06","id":"e0dz1mp","type":"comment","source":"undef"},
		{"year":"2018","month":"06","id":"e1uuo9e","type":"comment","source":"undef"},
		{"year":"2018","month":"06","id":"e0brc9w","type":"comment","source":"undef"},
		{"year":"2018","month":"06","id":"e0bz951","type":"comment","source":"undef"}
	],
	"GUM_reddit_escape": [
		{"year":"2017","month":"05","id":"69r98j","type": "post","source":"undef"},
		{"year":"2017","month":"05","id":"dh96n8v","type":"comment","source":"undef"},
		{"year":"2017","month":"05","id":"dh9enpe","type":"comment","source":"undef"},
		{"year":"2017","month":"05","id":"dht8oyn","type":"comment","source":"undef"},
		{"year":"2017","month":"05","id":"dhn0hoe","type":"comment","source":"undef"},
		{"year":"2017","month":"07","id":"dk9ted1","type":"comment","source":"undef"},
		{"year":"2017","month":"05","id":"dh98kcg","type":"comment","source":"undef"},
		{"year":"2017","month":"05","id":"dh9zxej","type":"comment","source":"undef"},
		{"year":"2017","month":"05","id":"di9x7j9","type":"comment","source":"undef"},
		{"year":"2017","month":"05","id":"di9xsrt","type":"comment","source":"undef"},
		{"year":"2017","month":"06","id":"din85zf","type":"comment","source":"undef"},
		{"year":"2017","month":"06","id":"dinab0w","type":"comment","source":"undef"},
		{"year":"2017","month":"06","id":"dinaggd","type":"comment","source":"undef"},
		{"year":"2017","month":"06","id":"dinbyb9","type":"comment","source":"undef"},
		{"year":"2017","month":"06","id":"dj65sp1","type":"comment","source":"undef"},
		{"year":"2017","month":"06","id":"dizdd8a","type":"comment","source":"undef"},
		{"year":"2017","month":"07","id":"dk78qw8","type":"comment","source":"undef"},
		{"year":"2017","month":"08","id":"dm0gqc7","type":"comment","source":"undef"},
		{"year":"2017","month":"10","id":"domd1r0","type":"comment","source":"undef"},
		{"year":"2017","month":"05","id":"dh9irie","type":"comment","source":"undef"},
		{"year":"2017","month":"05","id":"dh9iw36","type":"comment","source":"undef"},
		{"year":"2017","month":"06","id":"djlcwu5","type":"comment","source":"undef"},
		{"year":"2017","month":"06","id":"dlzcxpy","type":"comment","source":"undef"},
		{"year":"2017","month":"05","id":"dhabstb","type":"comment","source":"undef"},
		{"year":"2017","month":"05","id":"dhbr3m6","type":"comment","source":"undef"},
		{"year":"2017","month":"06","id":"diz97qy","type":"comment"}
	],
	"GUM_reddit_gender": [
		{"year":"2018","month":"09","id":"9e5urs","type":"post","source":"bigquery"},
		{"year":"2018","month":"09","id":"e5mg3s7","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5mkpok","type":"comment","source":"bigquery"},
		{"year":"2018","month":"09","id":"e5nxbmb","type":"comment","source":"bigquery"},
		{"year":"2018","month":"09","id":"e5nzg9j","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5mh94v","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5mmenp","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5ms5u3","type":"comment","source":"undef"}
	],
	"GUM_reddit_monsters":[
		{"year":"2018","month":"09","id":"9eci2u","type":"post","source":"undef"},
		{"year":"2018","month":"09","id":"e5ox2jr","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5p3gtl","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5pnfro","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5q08o4","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5pney1","type":"comment","source":"undef"},
	],
	"GUM_reddit_pandas":[
		{"year":"2018","month":"09","id":"9e3s9h","type":"post","source":"undef"},
		{"year":"2018","month":"09","id":"e5lwy6n","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5m397o","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5m3xgb","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5m3z2e","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5lwbbt","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5m38sr","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5m42cu","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5lvlxm","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5lvqay","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5lw5t6","type":"comment","source":"undef"},  # Blowhole
		{"year":"2018","month":"09","id":"e5lwz31","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5lxi0s","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5lwxqq","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5lzv1b","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5m48ag","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5m1yqe","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5lx0sw","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5m2n80","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5m2wrh","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5m3blb","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5lvxoc","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5m1abg","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5m1w5i","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5m3pdi","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5m3ruf","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5m4yu2","type":"comment","source":"undef"},
		{"year":"2018","month":"09","id":"e5m5bcb","type":"comment","source":"undef"}
	],
	"GUM_reddit_steak": [
		{"year":"2015","month":"08","id":"3im341","type":"post","source":"undef"}
	],
	"GUM_reddit_card": [
		{"year":"2019","month":"08","id":"cmqrwo","type":"post","source":"undef"},
		{"year":"2019","month":"08","id":"ew3zrqg","type":"comment","source":"undef"},
		{"year":"2019","month":"08","id":"ew43d2c","type":"comment","source":"undef"},
		{"year":"2019","month":"08","id":"ew43oks","type":"comment","source":"undef"},
		{"year":"2019","month":"08","id":"ew43ymc","type":"comment","source":"undef"},
		{"year":"2019","month":"08","id":"ew46h1p","type":"comment","source":"undef"},
		{"year":"2019","month":"08","id":"ew46oly","type":"comment","source":"undef"},
		{"year":"2019","month":"08","id":"ew46wq7","type":"comment","source":"undef"},
		{"year":"2019","month":"08","id":"ew470zc","type":"comment","source":"undef"}
	],
	"GUM_reddit_callout": [
		{"year":"2019","month":"09","id":"d1eg3u","type":"post","source":"undef"},
		{"year":"2019","month":"09","id":"ezkucpg","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezkv0cc","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezkwbx9","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezlh2o6","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezlkajf","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezlnco2","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezo20yy","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezkwcvh","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezl07dm","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezmajm7","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezl1wz3","type":"comment","source":"undef"},
	],
	"GUM_reddit_conspiracy": [
		{"year":"2019","month":"02","id":"aumhwo","type":"post","source":"undef"},
		{"year":"2019","month":"02","id":"eh9rt0n","type":"comment","source":"undef"},
		{"year":"2019","month":"02","id":"eh9tvyw","type":"comment","source":"undef"},
		{"year":"2019","month":"02","id":"ehc0l2q","type":"comment","source":"undef"},
		{"year":"2019","month":"02","id":"ehclwtv","type":"comment","source":"undef"},
		{"year":"2019","month":"02","id":"eh9jo5x","type":"comment","source":"undef"},
		{"year":"2019","month":"02","id":"ehr2665","type":"comment","source":"undef"},
		{"year":"2019","month":"02","id":"eha3c1q","type":"comment","source":"undef"},
		{"year":"2019","month":"02","id":"eha5jlq","type":"comment","source":"undef"},
	],
	"GUM_reddit_introverts": [
		{"year":"2019","month":"06","id":"by820m","type":"post","source":"undef","title_double": True},  # Possible title was repeated by annotator
		{"year":"2019","month":"06","id":"eqeik8m","type":"comment","source":"undef"},
		{"year":"2019","month":"06","id":"eqfgaeu","type":"comment","source":"undef"},
		{"year":"2019","month":"06","id":"eqfplpg","type":"comment","source":"undef"},
		{"year":"2019","month":"06","id":"eqg6a5u","type":"comment","source":"undef"},
		{"year":"2019","month":"06","id":"eqh6j29","type":"comment","source":"undef"},
		{"year":"2019","month":"06","id":"eqhjtwr","type":"comment","source":"undef"},
		{"year":"2019","month":"06","id":"eqi2jl3","type":"comment","source":"undef"},
		{"year":"2019","month":"06","id":"eqii2kf","type":"comment","source":"undef"},
		{"year":"2019","month":"06","id":"eqhlj8j","type":"comment","source":"undef"},

	],
	"GUM_reddit_racial": [
		{"year":"2019","month":"09","id":"d1urjk","type":"post","source":"undef"},
		{"year":"2019","month":"09","id":"ezq9y6w","type":"comment","source":"bigquery"},
		{"year":"2019","month":"09","id":"ezqpqmm","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezq8xs7","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezr55wk","type":"comment","source":"undef"},
	],
	"GUM_reddit_social": [
		{"year":"2019","month":"09","id":"d1qy3g","type":"post","source":"undef"},
		{"year":"2019","month":"09","id":"ezpb3jg","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezpdmy3","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezpjor8","type":"comment","source":"bigquery"},
		{"year":"2019","month":"09","id":"ezpiozm","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezpc1ps","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezp9fbh","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezqrumb","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezpe0e6","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezpf71f","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezt7qlf","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezpc4jj","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezpa2e4","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezpfzql","type":"comment","source":"undef"},
		{"year":"2019","month":"09","id":"ezpi39v","type":"comment","source":"undef"},
	]
}

def underscore_files(filenames):
	def underscore_rel_field(text):
		blanked = []
		text = text.replace("<*>","❤")
		for c in text:
			if c!="❤" and c!=" ":
				blanked.append("_")
			else:
				blanked.append(c)
		return "".join(blanked).replace("❤","<*>")

	for f_path in filenames:
		skiplen = 0
		with io.open(f_path, 'r', encoding='utf8') as fin:
			lines = fin.readlines()

		with io.open(f_path, 'w', encoding='utf8', newline="\n") as fout:
			output = []
			if f_path.endswith(".rels"):
				for l, line in enumerate(lines):
					line = line.strip()
					if "\t" in line and l > 0:
						doc, unit1_toks, unit2_toks, unit1_txt, unit2_txt, s1_toks, s2_toks, unit1_sent, unit2_sent, direction, orig_label, label = line.split("\t")
						if "GUM" in doc and "reddit" not in doc:
							output.append(line)
							continue
						unit1_txt = underscore_rel_field(unit1_txt)
						unit2_txt = underscore_rel_field(unit2_txt)
						unit1_sent = underscore_rel_field(unit1_sent)
						unit2_sent = underscore_rel_field(unit2_sent)
						fields = doc, unit1_toks, unit2_toks, unit1_txt, unit2_txt, s1_toks, s2_toks, unit1_sent, unit2_sent, direction, orig_label, label
						line = "\t".join(fields)
					output.append(line)
			else:
				doc = ""
				for line in lines:
					line = line.strip()
					if line.startswith("# newdoc_id"):
						doc = line.split("=",maxsplit=1)[1].strip()
					if "GUM" in doc and "reddit" not in doc:
						output.append(line)
						continue
					if line.startswith("# text"):
						m = re.match(r'(# text ?= ?)(.+)',line)
						if m is not None:
							line = m.group(1) + re.sub(r'[^\s]','_',m.group(2))
							output.append(line)
					elif "\t" in line:
						fields = line.split("\t")
						tok_col, lemma_col = fields[1:3]
						if lemma_col == tok_col:  # Delete lemma if identical to token
							fields[2] = '_'
						elif tok_col.lower() == lemma_col:
							fields[2] = "*LOWER*"
						if skiplen < 1:
							fields[1] = len(tok_col)*'_'
						else:
							skiplen -=1
						output.append("\t".join(fields))
						if "-" in fields[0]:  # Multitoken
							start, end = fields[0].split("-")
							start = int(start)
							end = int(end)
							skiplen = end - start + 1
					else:
						output.append(line)
			fout.write('\n'.join(output) + "\n")


def get_no_space_strings(cache_dict):
	import ast

	no_space_docs = defaultdict(str)

	for doc in gum_docs:
		for post in gum_docs[doc]:
			if post["id"] in cache_dict:
				json_result = cache_dict[post["id"]]
			parsed = ast.literal_eval(json_result)[0]
			if post["type"]=="post":
				plain = parsed["selftext"]
				title = parsed["title"]
				if "title_only" in post:
					if post["title_only"]:
						plain = ""
				if "title_double" in post:
					title = title + " " + title
			else:
				plain = parsed["body"]
				title = ""
			if "_space" in doc:
				plain = plain.replace("&gt;","")  # GUM_reddit_space has formatting &gt; to indicate indented block quotes
			elif "_gender" in doc:
				plain = plain.replace("- The vast","The vast")
				plain = plain.replace("- Society already accommodates","Society already accommodates")
				plain = plain.replace("- Society recognizes disabilities","Society recognizes disabilities")
				plain = plain.replace("- It’s a waste of time","It’s a waste of time")
				plain = plain.replace("PB&amp;J","PB&J")
			elif "_monsters" in doc:
				plain = plain.replace("1. He refers to","a. He refers to")
				plain = plain.replace("2. Using these","b. Using these")
				plain = plain.replace("3. And he has","c. And he has")
				plain = plain.replace("&#x200B; &#x200B;","")
				plain = re.sub(r' [0-9]+\. ',' ',plain)
			elif "_ring" in doc:
				plain = plain.replace("&gt;",">")
			elif "_escape" in doc:
				plain = plain.replace("*1 year later*","1 year later")
			elif "_racial" in doc:
				plain = plain.replace("> ","")
			elif "_callout" in doc:
				plain = plain.replace("_it","it").replace("well?_","well?").replace(">certain","certain")
			elif "_conspiracy" in doc:
				plain = plain.replace(">", "")
			elif "_stroke" in doc:
				plain = plain.replace("&amp;", "&")
			elif "_bobby" in doc:
				plain = plain.replace("&amp;", "&")
			elif "_introvert" in doc:
				plain = plain.replace("enjoy working out.","enjoy working out").replace("~~","")
			elif "_social" in doc:
				plain = plain.replace("the purpose","those purpose").replace("&#x200B;","")
			no_space = re.sub(r"\s","",plain).replace("*","")
			no_space = re.sub(r'\[([^]]+)\]\([^)]+\)',r'\1',no_space)  # Remove Wiki style links: [text](URL)
			if no_space_docs[doc] == "":
				no_space_docs[doc] += re.sub(r"\s","",title).replace("*","")
			no_space_docs[doc] += no_space

	return no_space_docs


def harvest_text(files):
	"""

	:param files: LDC files containing raw text data
	:return: Dictionary of document base names (e.g. wsj_0013) to string of non-whitespace characters in the document
	"""

	docs = {}

	for file_ in files:
		docname = os.path.basename(file_)
		if "." in docname:
			docname = docname.split(".")[0]
		try:
			text = io.open(file_,encoding="utf8").read()
		except:
			text = io.open(file_,encoding="Latin1").read()  # e.g. wsj_0142
		text = text.replace(".START","")  # Remove PDTB .START codes
		text = re.sub(r'\s','', text)  # Remove all whitespace
		docs[docname] = text

	return docs


def get_proxy_data():
	import requests
	out_posts = {}
	tab_delim = requests.get("https://corpling.uis.georgetown.edu/gum/fetch_text_proxy.py").text
	for line in tab_delim.split("\n"):
		if "\t" in line:
			post, text = line.split("\t")
			out_posts[post] = text
	return out_posts


def restore_docs(text_dict,dep_files=[],rel_files=[],tok_files=[]):
	def restore_range(range_string, underscored, tid_dict):
		output = []
		tok_ids = []
		range_strings = range_string.split(",")
		for r in range_strings:
			if "-" in r:
				s, e = r.split("-")
				tok_ids += list(range(int(s),int(e)+1))
			else:
				tok_ids.append(int(r))

		for tok in underscored.split():
			if tok == "<*>":
				output.append(tok)
			else:
				tid = tok_ids.pop(0)
				output.append(tid_dict[tid])
		return " ".join(output)


	skiplen = 0
	token_dict = {}
	tid2string = defaultdict(dict)
	for file_ in dep_files + tok_files + rel_files:
		lines = io.open(file_,encoding="utf8").readlines()
		underscore_len = 0  # Must match doc_len at end of file processing
		doc_len = 0
		if file_.endswith(".rels") or file_ in rel_files:
			output = []
			violation_rows = []
			for l, line in enumerate(lines):
				line = line.strip()
				if l > 0 and "\t" in line:
					fields = line.split("\t")
					docname = fields[0]
					text = text_dict[docname]
					if "GUM_" in docname and "reddit" not in docname:  # Only Reddit documents need reconstruction in GUM
						output.append(line)
						continue
					doc, unit1_toks, unit2_toks, unit1_txt, unit2_txt, s1_toks, s2_toks, unit1_sent, unit2_sent, direction, orig_label, label = line.split("\t")
					underscore_len += unit1_txt.count("_") + unit2_txt.count("_") + unit1_sent.count("_") + unit2_sent.count("_")
					if underscore_len == 0:
						sys.stderr.write("! Non-underscored file detected - " + os.path.basename(file_) + "\n")
						sys.exit(0)
					unit1_txt = restore_range(unit1_toks, unit1_txt, tid2string[docname])
					unit2_txt = restore_range(unit2_toks, unit2_txt, tid2string[docname])
					unit1_sent = restore_range(s1_toks, unit1_sent, tid2string[docname])
					unit2_sent = restore_range(s2_toks, unit2_sent, tid2string[docname])
					plain = unit1_txt + unit2_txt + unit1_sent + unit2_sent
					plain = plain.replace("<*>","").replace(" ","")
					doc_len += len(plain)
					fields = doc, unit1_toks, unit2_toks, unit1_txt, unit2_txt, s1_toks, s2_toks, unit1_sent, unit2_sent, direction, orig_label, label
					line = "\t".join(fields)
					if doc_len != underscore_len and len(violation_rows) == 0:
						violation_rows.append(str(l) + ": " + line)
				output.append(line)

		else:
			tokfile = True if ".tok" in file_ else False
			output = []
			parse_text = ""
			docname = ""
			for line in lines:
				line = line.strip()
				if "# newdoc_id " in line:
					tid = 0
					if parse_text !="":
						if not tokfile:
							token_dict[docname] = parse_text
					parse_text = ""
					docname = re.search(r'# newdoc_id ?= ?([^\s]+)',line).group(1)
					if "GUM" in docname and "reddit" not in docname:
						output.append(line)
						continue
					if docname not in text_dict:
						raise IOError("! Text for document name " + docname + " not found.\n Please check that your LDC data contains the file for this document.\n")
					if ".tok" in file_:
						text = token_dict[docname]
					else:
						text = text_dict[docname]
					doc_len = len(text)
					underscore_len = 0

				if "GUM" in docname and "reddit" not in docname:
					output.append(line)
					continue

				if line.startswith("# text"):
					m = re.match(r'(# ?text ?= ?)(.+)',line)
					if m is not None:
						i = 0
						sent_text = ""
						for char in m.group(2).strip():
							if char != " ":
								sent_text += text[i]
								i+=1
							else:
								sent_text += " "
						line = m.group(1) + sent_text
						output.append(line)
				elif "\t" in line:
					fields = line.split("\t")
					if skiplen < 1:
						underscore_len += len(fields[1])
						fields[1] = text[:len(fields[1])]
					if not "-" in fields[0] and not "." in fields[0]:
						parse_text += fields[1]
						tid += 1
						tid2string[docname][tid] = fields[1]
					if not tokfile:
						if fields[2] == '_' and not "-" in fields[0] and not "." in fields[0]:
							fields[2] = fields[1]
						elif fields[2] == "*LOWER*":
							fields[2] = fields[1].lower()
					if skiplen < 1:
						text = text[len(fields[1]):]
					else:
						skiplen -=1
					output.append("\t".join(fields))
					if "-" in fields[0]:  # Multitoken
						start, end = fields[0].split("-")
						start = int(start)
						end = int(end)
						skiplen = end - start + 1
				else:
					output.append(line)

		if not doc_len == underscore_len:
			if ".rels" in file_:
				sys.stderr.write(
					"\n! Tried to restore file " + os.path.basename(file_) + " but source text has different length than tokens in shared task file:\n" + \
					"  Source text in data/: " + str(doc_len) + " non-whitespace characters\n" + \
					"  Token underscores in " + file_ + ": " + str(underscore_len) + " non-whitespace characters\n" + \
					"  Violation row: " + violation_rows[0])
			else:
				sys.stderr.write("\n! Tried to restore document " + docname + " but source text has different length than tokens in shared task file:\n" + \
						  "  Source text in data/: " + str(doc_len) + " non-whitespace characters\n" + \
						  "  Token underscores in " + file_+": " + str(underscore_len) + " non-whitespace characters\n")
			with io.open("debug.txt",'w',encoding="utf8") as f:
				f.write(text_dict[docname])
				f.write("\n\n\n")
				f.write(parse_text)
			sys.exit(0)

		if not tokfile and parse_text != "":
			token_dict[docname] = parse_text

		with io.open(file_, 'w', encoding='utf8', newline="\n") as fout:
			fout.write("\n".join(output) + "\n")

	sys.stderr.write("o Restored text in " + str(len(dep_files)) + " .conllu files, " + str(len(tok_files)) +
					 " .tok files and "+ str(len(rel_files)) + " .rels files\n")


p = ArgumentParser()
p.add_argument("corpus",action="store",choices=["rstdt","pdtb","cdtb","tdb","gum","all"],default="all",help="Name of the corpus to process or 'all'")
p.add_argument("--rel_files", nargs='*', default=[])
p.add_argument("--dep_files", nargs='*', default=[])
p.add_argument("--tok_files", nargs='*', default=[])
opts = p.parse_args()


todo = {k:v for k,v in vars(opts).items() if 'files' in k}

# Prompt user for corpus folders
if opts.corpus == "rstdt" or opts.corpus == "all":
	rstdt_path = input("Enter path for LDC RST-DT data/ folder:\n> ")
	if not os.path.isdir(rstdt_path):
		sys.stderr.write("Can't find directory at: " + rstdt_path + "\n")
		sys.exit(0)
	files = glob(os.sep.join([rstdt_path,"RSTtrees-WSJ-main-1.0","TRAINING","*.edus"])) + glob(os.sep.join([rstdt_path,"RSTtrees-WSJ-main-1.0","TEST","*.edus"]))
	docs2text = harvest_text(files)
	restore_docs(docs2text,**todo)
if opts.corpus == "pdtb" or opts.corpus == "all":
	pdtb_path = input("Enter path for LDC Treebank 2 raw/wsj/ folder:\n> ")
	if not os.path.isdir(pdtb_path):
		sys.stderr.write("Can't find directory at: " + pdtb_path + "\n")
		sys.exit(0)
	files = []
	for i in range(0,25):
		dir_name = str(i) if i > 9 else "0" + str(i)
		files += glob(os.sep.join([pdtb_path,dir_name,"wsj_*"]))
	docs2text = harvest_text(files)
	restore_docs(docs2text,**todo)
if opts.corpus == "cdtb" or opts.corpus == "all":
	cdtb_path = input("Enter path for LDC Chinese Discourse Treebank 0.5 raw/ folder:\n> ")
	if not os.path.isdir(cdtb_path):
		sys.stderr.write("Can't find directory at: " + cdtb_path + "\n")
		sys.exit(0)
	files = glob(os.sep.join([cdtb_path,"*.raw"]))
	docs2text = harvest_text(files)
	restore_docs(docs2text,**todo)
if opts.corpus == "tdb" or opts.corpus == "all":
	tdb_path = input("Enter path for Turkish Discourse Bank 1.0 raw/01/ folder:\n> ")
	if not os.path.isdir(tdb_path):
		sys.stderr.write("Can't find directory at: " + tdb_path + "\n")
		sys.exit(0)
	files = glob(os.sep.join([tdb_path,"*.txt"]))
	docs2text = harvest_text(files)
	restore_docs(docs2text,**todo)

if opts.corpus == "gum" or opts.corpus == "all":
	print("Retrieving reddit data by proxy...")
	data = get_proxy_data()
	docs2text = get_no_space_strings(data)
	restore_docs(docs2text,**todo)