|
import datasets |
|
import csv |
|
import requests |
|
import pandas as pd |
|
import inspect |
|
import copy |
|
from .process_underscores import run |
|
|
|
key_to_entry = requests.get('https://www.dropbox.com/scl/fi/85pnc7n6e4puoureavtzo/filtered_disrpt.json?rlkey=6cbgbe9vn2549eths7ah8gm7u&dl=1').json() |
|
citation="\n".join(key_to_entry.values()) |
|
|
|
datasets_and_citations = { |
|
"deu.rst.pcc": "stede-neumann-2014-potsdam", |
|
"eng.dep.covdtb": "nishida-matsumoto-2022-domain", |
|
"eng.dep.scidtb": "yang-li-2018-scidtb", |
|
"eng.rst.gum": "Zeldes2017", |
|
"eng.rst.rstdt": "carlson-etal-2001-building", |
|
"eng.sdrt.stac": "asher-etal-2016-discourse", |
|
"eus.rst.ert": "IruskietaAranzabeIlarrazaEtAl2013", |
|
"fas.rst.prstc": "shahmohammadi2021persian", |
|
"fra.sdrt.annodis": "afantenos-etal-2012-empirical", |
|
"nld.rst.nldt": "redeker-etal-2012-multi", |
|
"por.rst.cstn": "CardosoMazieroRosarioCastroJorgeEtAl2011", |
|
"rus.rst.rrt": "toldova-etal-2017-rhetorical", |
|
"spa.rst.rststb": "da-cunha-etal-2011-development", |
|
"spa.rst.sctb": "cao-etal-2018-rst", |
|
"zho.dep.scidtb": "yi-etal-2021-unifying,cheng-li-2019-zero", |
|
"zho.rst.gcdt": "peng_gcdt_2022,peng_chinese_2022", |
|
"zho.rst.sctb": "cao-etal-2018-rst", |
|
"eng.pdtb.pdtb": "prasad-etal-2014-reflections", |
|
"eng.pdtb.tedm": "zeyrek-etal-2018-multilingual,zeyrek2019ted", |
|
"ita.pdtb.luna": "tonelli-etal-2010-annotation,RiccardiStepanovChowdhury2016", |
|
"por.pdtb.crpc": "CRPC-DB-Portuguese,genereux-etal-2012-introducing", |
|
"por.pdtb.tedm": "zeyrek-etal-2018-multilingual,zeyrek2019ted", |
|
"tha.pdtb.tdtb": "", |
|
"tur.pdtb.tdb": "zeyrek-webber-2008-discourse,zeyrek-kurfali-2017-tdb", |
|
"tur.pdtb.tedm": "zeyrek-etal-2018-multilingual,zeyrek2019ted", |
|
"zho.pdtb.cdtb": "Zhou2014" |
|
} |
|
|
|
|
|
class Config(datasets.BuilderConfig): |
|
citation=citation |
|
|
|
files = [ |
|
"deu.rst.pcc", |
|
"eng.dep.covdtb", |
|
"eng.dep.scidtb", |
|
"eng.pdtb.gum", |
|
"eng.pdtb.pdtb", |
|
"eng.pdtb.tedm", |
|
"eng.rst.gentle", |
|
"eng.rst.gum", |
|
"eng.rst.rstdt", |
|
"eng.sdrt.stac", |
|
"eus.rst.ert", |
|
"fas.rst.prstc", |
|
"fra.sdrt.annodis", |
|
"ita.pdtb.luna", |
|
"nld.rst.nldt", |
|
"por.pdtb.crpc", |
|
"por.pdtb.tedm", |
|
"por.rst.cstn", |
|
"rus.rst.rrt", |
|
"spa.rst.rststb", |
|
"spa.rst.sctb", |
|
"tha.pdtb.tdtb", |
|
"tur.pdtb.tdb", |
|
"tur.pdtb.tedm", |
|
"zho.dep.scidtb", |
|
"zho.pdtb.cdtb", |
|
"zho.rst.gcdt", |
|
"zho.rst.sctb" |
|
] |
|
def fix_mwe(sentence): |
|
mwe={} |
|
sentence['parent_mwe']=[] |
|
for i, x in enumerate(sentence['id']): |
|
if '-' in x: |
|
for a in x.split('-'): |
|
mwe[a]=sentence['form'][i] |
|
sentence['parent_mwe']+=[mwe.get(x,'')] |
|
|
|
for i, x in enumerate(sentence['id']): |
|
if "-" in x: |
|
for k,v in sentence.items(): |
|
del v[i] |
|
return sentence |
|
|
|
def parse_conll_stream(file_stream): |
|
names = ['id', 'form', 'lemma', 'upos', 'xpos', 'feats', 'head', 'deprel', 'deps', 'misc','doc_id'] |
|
sentence = {name: [] for name in names} |
|
mwe_id=[] |
|
for line in file_stream: |
|
line = line.strip() |
|
if line.startswith("#"): |
|
if "doc_id" in line: |
|
doc_id=line.split('=')[-1].strip() |
|
continue |
|
if not line: |
|
if sentence['id']: |
|
yield sentence |
|
sentence = {name: [] for name in names} |
|
continue |
|
token_data = line.split('\t') + [doc_id] |
|
for name, value in zip(names, token_data): |
|
if name=='id' and not value.isnumeric(): |
|
mwe_id=value.split('-') |
|
else: |
|
sentence[name].append(value) |
|
|
|
def get_kwarg_names(func): |
|
return [k for k, v in inspect.signature(func).parameters.items() if v.default != v.empty] |
|
|
|
_URLs = {f'{task}-{split}.{type}':f"https://raw.githubusercontent.com/disrpt/sharedtask2023/main/data/{task}/{task}_{split}.{type}" \ |
|
for task in files for split in 'train dev test'.split() for type in ['rels','conllu']} |
|
|
|
|
|
conllu_features = ['id', 'form', 'lemma', 'upos', 'xpos', 'feats', 'head', 'deprel', 'deps', 'misc', 'seg','doc_id'] |
|
feature_type = {"seg":datasets.features.Sequence( |
|
datasets.features.ClassLabel(names=["O","B-Segment"])), |
|
'id':datasets.Value("string"),'doc_id':datasets.Value("string")} |
|
|
|
conllu_features = datasets.Features({x:feature_type.get(x,datasets.Sequence(datasets.Value("string"))) |
|
for x in conllu_features}) |
|
|
|
def map_seg(x): |
|
return [("B-Segment" if "beginseg=yes" in a.lower() else "O") for a in x] |
|
|
|
def remove_type(x): |
|
return x.replace(".rels","").replace(".conllu","") |
|
|
|
class Dataset(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
Config( |
|
name=f"{n}.{type}", |
|
data_dir=f"{n}.{type}", |
|
) for n in files for type in ["rels","conllu"] |
|
] |
|
def __init__(self,*args,**kwargs): |
|
self.BUILDER_CONFIG_CLASS.__post_init__=lambda x:x |
|
base_kwargs_names=get_kwarg_names(super().__init__) |
|
gen_kwargs={} |
|
self.files={} |
|
self.preprocessed_underscores=dict() |
|
for k,v in copy.deepcopy(kwargs).items(): |
|
if k not in base_kwargs_names: |
|
gen_kwargs[k]=v |
|
del kwargs[k] |
|
self.gen_kwargs=gen_kwargs |
|
return super().__init__(*args,**kwargs) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
cfg_name = self.config.name.rsplit('.', 1)[0] |
|
data_dir = remove_type(self.config.data_dir) |
|
type = self.config.name.split('.')[-1] |
|
urls={k:v for (k,v) in _URLs.items() if cfg_name in k and requests.get(v).status_code!=404} |
|
data_file = dl_manager.download(urls) |
|
self.files = {**self.files, **data_file} |
|
|
|
splits_dict = {datasets.Split.TRAIN: 'train', datasets.Split.VALIDATION: 'dev', datasets.Split.TEST: 'test'} |
|
|
|
split_generators = [ |
|
datasets.SplitGenerator(name=split, gen_kwargs={"filepath": data_file[f"{data_dir}-{key}.{type}"]}) |
|
for split, key in splits_dict.items() |
|
if f"{data_dir}-{key}.{type}" in data_file |
|
] |
|
return split_generators |
|
|
|
def _info(self): return datasets.DatasetInfo( |
|
citation=key_to_entry.get(datasets_and_citations.get(remove_type(self.config.name)),None), |
|
features=(None if ".rels" in self.config.name else conllu_features) |
|
) |
|
|
|
def _generate_examples(self, filepath): |
|
print(filepath) |
|
corpus=self.config.name.split('.')[2] |
|
run_args={ |
|
'corpus':corpus, |
|
'rel_files': [v for k, v in self.files.items() if '.rels' in k], |
|
'dep_files': [v for k, v in self.files.items() if '.conllu' in k], |
|
**{k:v for k,v in self.gen_kwargs.items() if 'path' in k} |
|
} |
|
print('run_args',run_args) |
|
if corpus in ['rstdt','pdtb','cdtb','gum','tdb'] and not self.preprocessed_underscores.get(corpus,False) and self.gen_kwargs.get('process_underscore',True): |
|
run(**run_args) |
|
self.preprocessed_underscores[corpus]=True |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
if "conllu" in self.config.name: |
|
stream=parse_conll_stream(f) |
|
for i, row in enumerate(stream): |
|
row['seg']=map_seg(row['misc']) |
|
row['doc_id']=row['doc_id'][0] |
|
yield i,row |
|
reader = csv.DictReader(f,delimiter='\t',quoting=csv.QUOTE_NONE) |
|
for id_, row in enumerate(reader): |
|
if id_ == 0: |
|
continue |
|
yield id_, row |