# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MedWiki is a large-scale sentence dataset collected from Wikipedia with medical entity (UMLS) annotations. This dataset is intended for pretraining""" import csv import json import os import datasets _CITATION = """\ @inproceedings{medwiki, title={Cross-Domain Data Integration for Named Entity Disambiguation in Biomedical Text}, author={Maya Varma and Laurel Orr and Sen Wu and Megan Leszczynski and Xiao Ling and Christopher RĂ©}, year={2021}, booktitle={Findings of the Association for Computational Linguistics: EMNLP 2021} } """ _DESCRIPTION = """\ MedWiki is a large-scale sentence dataset collected from Wikipedia with medical entity (UMLS) annotations. This dataset is intended for pretraining. """ _HOMEPAGE = "" _LICENSE = "" _URLs = ["https://huggingface.co/datasets/mvarma/medwiki/blob/main/medwiki_full.zip", \ "https://huggingface.co/datasets/mvarma/medwiki/blob/main/medwiki_hq.zip"] class MedWiki(datasets.GeneratorBasedBuilder): """MedWiki: A Large-Scale Sentence Dataset with Medical Entity (UMLS) Annotations""" VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="medwiki", version=VERSION, description="MedWiki: A Large-Scale Sentence Dataset with Medical Entity (UMLS) Annotations"), ] BUILDER_CONFIGS = [ datasets.BuilderConfig(name="medwiki_full", version=VERSION, description="MedWiki (Full): A Large-Scale Sentence Dataset with Medical Entity (UMLS) Annotations."), datasets.BuilderConfig(name="medwiki_hq", version=VERSION, description="MedWiki (HQ): A Large-Scale Sentence Dataset with Medical Entity (UMLS) Annotations. The HQ (high quality) subset of MedWiki includes a portion of the dataset with higher-quality entity annotations."), ] def _info(self): features = datasets.Features( { "mentions": datasets.Sequence(datasets.Value("string")), "entities": datasets.Sequence(datasets.Value("string")), "entity_titles": datasets.Sequence(datasets.Value("string")), "types": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), "spans": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))), "sentence": datasets.Value("string"), "sent_idx_unq": datasets.Value("int32"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" my_urls = _URLs[self.config.name] data_dir = dl_manager.download_and_extract(my_urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join(data_dir, "train.jsonl"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join(data_dir, "test.jsonl"), "split": "test" }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": os.path.join(data_dir, "dev.jsonl"), "split": "dev", }, ), ] def _generate_examples(self, filepath, split ): """ Yields examples as (key, example) tuples. """ with open(filepath, encoding="utf-8") as f: for id_, row in enumerate(f): data = json.loads(row) yield id_, { "mentions": data["mentions"], "entities": data["entities"], "entity_titles": data['entity_titles'], "types": data["types"], "spans": data["spans"], "sentence": data["sentence"], "sent_idx_unq": data["sent_idx_unq"], }