Datasets:
Tasks:
Text Generation
Formats:
json
Sub-tasks:
language-modeling
Languages:
code
Size:
100K - 1M
License:
File size: 5,691 Bytes
8eade86 79560eb 8eade86 ca9342e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
---
annotations_creators:
- crowdsourced
license: other
language_creators:
- crowdsourced
language:
- code
task_categories:
- text-generation
tags:
- code, swift, native iOS development, curated
size_categories:
- 100K<n<1M
source_datasets: []
pretty_name: iva-swift-codeint-clean
task_ids:
- language-modeling
---
# IVA Swift GitHub Code Dataset
## Dataset Description
This is the curated IVA Swift dataset extracted from GitHub.
It contains curated Swift files gathered with the purpose to train a code generation model.
The dataset consists of 383380 swift code files from GitHub totaling ~542MB of data.
The [uncurated](https://huggingface.co/datasets/mvasiliniuc/iva-swift-codeint) dataset was created from the public GitHub dataset on Google BiqQuery.
### How to use it
To download the full dataset:
```python
from datasets import load_dataset
dataset = load_dataset('mvasiliniuc/iva-swift-codeint-clean', split='train')
```
```python
from datasets import load_dataset
dataset = load_dataset('mvasiliniuc/iva-swift-codeint-clean', split='train')
print(dataset[723])
#OUTPUT:
{
"repo_name":"jdkelley/Udacity-OnTheMap-ExampleApps",
"path":"TheMovieManager-v2/TheMovieManager/BorderedButton.swift",
"copies":"2",
"size":"2649",
"content":"...let phoneBorderedButtonExtraPadding: CGFloat = 14.0\n \n var backingColor: UIColor? = nil\n var highlightedBackingColor: UIColor? = nil\n \n // MARK: Initialization\n}",
"license":"mit",
"hash":"db1587fd117e9a835f58cf8203d8bf05",
"line_mean":29.1136363636,
"line_max":87,
"alpha_frac":0.6700641752,
"ratio":5.298,
"autogenerated":false,
"config_or_test":false,
"has_no_keywords":false,
"has_few_assignments":false
}
```
## Data Structure
### Data Fields
|Field|Type|Description|
|---|---|---|
|repo_name|string|name of the GitHub repository|
|path|string|path of the file in GitHub repository|
|copies|string|number of occurrences in dataset|
|content|string|content of source file|
|size|string|size of the source file in bytes|
|license|string|license of GitHub repository|
|hash|string|Hash of content field.|
|line_mean|number|Mean line length of the content.
|line_max|number|Max line length of the content.
|alpha_frac|number|Fraction between mean and max line length of content.
|ratio|number|Character/token ratio of the file with tokenizer.
|autogenerated|boolean|True if the content is autogenerated by looking for keywords in the first few lines of the file.
|config_or_test|boolean|True if the content is a configuration file or a unit test.
|has_no_keywords|boolean|True if a file has none of the keywords for Swift Programming Language.
|has_few_assignments|boolean|True if file uses symbol '=' less than `minimum` times.
### Instance
```json
{
"repo_name":"...",
"path":".../BorderedButton.swift",
"copies":"2",
"size":"2649",
"content":"...",
"license":"mit",
"hash":"db1587fd117e9a835f58cf8203d8bf05",
"line_mean":29.1136363636,
"line_max":87,
"alpha_frac":0.6700641752,
"ratio":5.298,
"autogenerated":false,
"config_or_test":false,
"has_no_keywords":false,
"has_few_assignments":false
}
```
## Languages
The dataset contains only Swift files.
```json
{
"Swift": [".swift"]
}
```
## Licenses
Each entry in the dataset contains the associated license. The following is a list of licenses involved and their occurrences.
```json
{
"agpl-3.0":1695,
"apache-2.0":85514,
"artistic-2.0":207,
"bsd-2-clause":3132,
"bsd-3-clause":6600,
"cc0-1.0":1409,
"epl-1.0":605,
"gpl-2.0":9374,
"gpl-3.0":18920,
"isc":808,
"lgpl-2.1":1122,
"lgpl-3.0":3103,
"mit":240929,
"mpl-2.0":8181,
"unlicense":1781
}
```
## Dataset Statistics
```json
{
"Total size": "~542 MB",
"Number of files": 383380,
"Number of files under 500 bytes": 3680,
"Average file size in bytes": 5942,
}
```
## Curation Process
* Removal of duplication files based on file hash.
* Removal of file templates. File containing the following: `___FILENAME___, ___PACKAGENAME___, ___FILEBASENAME___, ___FILEHEADER___, ___VARIABLE`
* Removal of the files containing the following words in the first 10 lines: `generated, auto-generated", "autogenerated", "automatically generated`
* Removal of the files containing the following words in the first 10 lines with a probability of 0.7: `test", "unit test", "config", "XCTest", "JUnit`
* Removal of file with the rate of alphanumeric characters below 0.3 of the file.
* Removal of near duplication based MinHash and Jaccard similarity.
* Removal of files with mean line length above 100.
* Removal of files without mention of keywords with a probability of 0.7: `struct ", "class ", "for ", "while ", "enum ", "func ", "typealias ", "var ", "let ", "protocol ", "public ", "private ", "internal ", "import "`
* Removal of files that use the assignment operator `=` less than 3 times.
* Removal of files with the ratio between the number of characters and number of tokens after tokenization lower than 1.5.
Curation process is a derivation of the one used in CodeParrot project: https://huggingface.co/codeparrot
## Data Splits
The dataset only contains a train split which is separated into train and valid which can be found here:
* Clean Version Train: https://huggingface.co/datasets/mvasiliniuc/iva-swift-codeint-clean-train
* Clean Version Valid: https://huggingface.co/datasets/mvasiliniuc/iva-swift-codeint-clean-valid
# Considerations for Using the Data
The dataset comprises source code from various repositories, potentially containing harmful or biased code,
along with sensitive information such as passwords or usernames.
|