Datasets:
Create fashion_mnist_ambiguous.py
Browse files- fashion_mnist_ambiguous.py +163 -0
fashion_mnist_ambiguous.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""An ambiguous fashion mnist data set"""
|
2 |
+
|
3 |
+
import csv
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
import numpy as np
|
7 |
+
from datasets.tasks import ImageClassification
|
8 |
+
|
9 |
+
_CITATION = """\
|
10 |
+
@misc{https://doi.org/10.48550/arxiv.2207.10495,
|
11 |
+
doi = {10.48550/ARXIV.2207.10495},
|
12 |
+
url = {https://arxiv.org/abs/2207.10495},
|
13 |
+
author = {Weiss, Michael and Gómez, André García and Tonella, Paolo},
|
14 |
+
title = {A Forgotten Danger in DNN Supervision Testing: Generating and Detecting True Ambiguity},
|
15 |
+
publisher = {arXiv},
|
16 |
+
year = {2022}
|
17 |
+
}
|
18 |
+
"""
|
19 |
+
|
20 |
+
_DESCRIPTION = """\
|
21 |
+
The images were created such that they have an unclear ground truth,
|
22 |
+
i.e., such that they are similar to multiple - but not all - of the datasets classes.
|
23 |
+
Robust and uncertainty-aware models should be able to detect and flag these ambiguous images.
|
24 |
+
As such, the dataset should be merged / mixed with the original dataset and we
|
25 |
+
provide such 'mixed' splits for convenience. Please refer to the dataset card for details.
|
26 |
+
"""
|
27 |
+
|
28 |
+
_HOMEPAGE = "https://github.com/testingautomated-usi/ambiguous-datasets"
|
29 |
+
_LICENSE = "https://raw.githubusercontent.com/testingautomated-usi/ambiguous-datasets/main/LICENSE"
|
30 |
+
|
31 |
+
_VERSION = "0.1.0"
|
32 |
+
_URL = f"https://github.com/testingautomated-usi/ambiguous-datasets/releases/download/v{_VERSION}/"
|
33 |
+
|
34 |
+
_URLS = {
|
35 |
+
"train": "fmnist-test.csv",
|
36 |
+
"test": "fmnist-test.csv",
|
37 |
+
}
|
38 |
+
|
39 |
+
_NAMES = [
|
40 |
+
"T - shirt / top",
|
41 |
+
"Trouser",
|
42 |
+
"Pullover",
|
43 |
+
"Dress",
|
44 |
+
"Coat",
|
45 |
+
"Sandal",
|
46 |
+
"Shirt",
|
47 |
+
"Sneaker",
|
48 |
+
"Bag",
|
49 |
+
"Ankle boot",
|
50 |
+
]
|
51 |
+
|
52 |
+
|
53 |
+
class FashionMnistAmbiguous(datasets.GeneratorBasedBuilder):
|
54 |
+
"""An ambiguous fashion mnist data set"""
|
55 |
+
|
56 |
+
BUILDER_CONFIGS = [
|
57 |
+
datasets.BuilderConfig(
|
58 |
+
name="fashion_mnist_ambiguous",
|
59 |
+
version=datasets.Version(_VERSION),
|
60 |
+
description=_DESCRIPTION,
|
61 |
+
)
|
62 |
+
]
|
63 |
+
|
64 |
+
def _info(self):
|
65 |
+
return datasets.DatasetInfo(
|
66 |
+
description=_DESCRIPTION,
|
67 |
+
features=datasets.Features(
|
68 |
+
{
|
69 |
+
"image": datasets.Image(),
|
70 |
+
"label": datasets.features.ClassLabel(names=_NAMES),
|
71 |
+
"text_label": datasets.Value("string"),
|
72 |
+
"p_label": datasets.Sequence(datasets.Value("float32"), length=10),
|
73 |
+
"is_ambiguous": datasets.Value("bool"),
|
74 |
+
}
|
75 |
+
),
|
76 |
+
supervised_keys=("image", "label"),
|
77 |
+
homepage=_HOMEPAGE,
|
78 |
+
citation=_CITATION,
|
79 |
+
task_templates=[ImageClassification(image_column="image", label_column="label")],
|
80 |
+
)
|
81 |
+
|
82 |
+
def _split_generators(self, dl_manager):
|
83 |
+
urls_to_download = {key: _URL + fname for key, fname in _URLS.items()}
|
84 |
+
downloaded_files = dl_manager.download(urls_to_download)
|
85 |
+
|
86 |
+
return [
|
87 |
+
datasets.SplitGenerator(
|
88 |
+
name=datasets.Split.TRAIN,
|
89 |
+
gen_kwargs={
|
90 |
+
"filepath": downloaded_files["train"],
|
91 |
+
"split": "train",
|
92 |
+
},
|
93 |
+
),
|
94 |
+
datasets.SplitGenerator(
|
95 |
+
name=datasets.Split.TEST,
|
96 |
+
gen_kwargs={
|
97 |
+
"filepath": downloaded_files["test"],
|
98 |
+
"split": "test",
|
99 |
+
},
|
100 |
+
),
|
101 |
+
datasets.SplitGenerator(
|
102 |
+
name="train_mixed",
|
103 |
+
gen_kwargs={
|
104 |
+
"filepath": downloaded_files["train"],
|
105 |
+
"split": "train_mixed",
|
106 |
+
},
|
107 |
+
),
|
108 |
+
datasets.SplitGenerator(
|
109 |
+
name="test_mixed",
|
110 |
+
gen_kwargs={
|
111 |
+
"filepath": downloaded_files["test"],
|
112 |
+
"split": "test_mixed",
|
113 |
+
},
|
114 |
+
),
|
115 |
+
]
|
116 |
+
|
117 |
+
def _generate_examples(self, filepath, split):
|
118 |
+
"""This function returns the examples in the raw form."""
|
119 |
+
|
120 |
+
def _gen_amb_images():
|
121 |
+
with open(filepath) as csvfile:
|
122 |
+
spamreader = csv.reader(csvfile, delimiter=',', quotechar='"')
|
123 |
+
for i, row in enumerate(spamreader):
|
124 |
+
if i == 0:
|
125 |
+
continue
|
126 |
+
|
127 |
+
det_label = int(row[7])
|
128 |
+
class_1, class_2 = int(row[3]), int(row[4])
|
129 |
+
p_1, p_2 = float(row[5]), float(row[6])
|
130 |
+
text_label = f"p({_NAMES[class_1]})={p_1:.2f}, p({_NAMES[class_2]})={p_2:.2f}"
|
131 |
+
|
132 |
+
p_label = [0.0] * 10
|
133 |
+
p_label[class_1] = p_1
|
134 |
+
p_label[class_2] = p_2
|
135 |
+
|
136 |
+
image = np.array(row[9:], dtype=np.uint8).reshape(28, 28)
|
137 |
+
|
138 |
+
yield i, {"image": image, "label": det_label,
|
139 |
+
"text_label": text_label, "p_label": p_label, "is_ambiguous": True}
|
140 |
+
|
141 |
+
if split == "test" or split == "train":
|
142 |
+
yield from _gen_amb_images()
|
143 |
+
|
144 |
+
elif split == "test_mixed" or split == "train_mixed":
|
145 |
+
|
146 |
+
nominal_samples = []
|
147 |
+
nom_split = "test" if split == "test_mixed" else "train"
|
148 |
+
nominal_dataset = datasets.load_dataset("fashion_mnist", split=nom_split)
|
149 |
+
for x in nominal_dataset:
|
150 |
+
nominal_samples.append({
|
151 |
+
"image": np.array(x["image"]),
|
152 |
+
"label": x["label"],
|
153 |
+
"text_label": f"p({_NAMES[x['label']]})=1",
|
154 |
+
"p_label": [1.0 if i == x["label"] else 0.0 for i in range(10)],
|
155 |
+
"is_ambiguous": False
|
156 |
+
})
|
157 |
+
|
158 |
+
ambiguous_samples = list([x for i, x in _gen_amb_images()])
|
159 |
+
all_samples = nominal_samples + ambiguous_samples
|
160 |
+
np.random.RandomState(42).shuffle(all_samples)
|
161 |
+
|
162 |
+
for i, x in enumerate(all_samples):
|
163 |
+
yield i, x
|