Datasets:

Languages:
English
ArXiv:
License:
mathqa-x / mathqa-x.py
skgouda's picture
Update mathqa-x.py
e61d63a
import json
import os
import requests
import datasets
import os
from collections import defaultdict
_CITATION = """\
@article{mbxp_athiwaratkun2022,
title = {Multi-lingual Evaluation of Code Generation Models},
author = {Athiwaratkun, Ben and
Gouda, Sanjay Krishna and
Wang, Zijian and
Li, Xiaopeng and
Tian, Yuchen and
Tan, Ming
and Ahmad, Wasi Uddin and
Wang, Shiqi and
Sun, Qing and
Shang, Mingyue and
Gonugondla, Sujan Kumar and
Ding, Hantian and
Kumar, Varun and
Fulton, Nathan and
Farahani, Arash and
Jain, Siddhartha and
Giaquinto, Robert and
Qian, Haifeng and
Ramanathan, Murali Krishna and
Nallapati, Ramesh and
Ray, Baishakhi and
Bhatia, Parminder and
Sengupta, Sudipta and
Roth, Dan and
Xiang, Bing},
doi = {10.48550/ARXIV.2210.14868},
url = {https://arxiv.org/abs/2210.14868},
keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}"""
VERSION=f"1.1.0"
_HOMEPAGE = "https://github.com/amazon-science/mbxp-exec-eval"
_LICENSE = "Apache License 2.0"
_DESCRIPTION = """\
A collection of execution-based multi-lingual benchmark for code generation.
"""
_LICENSES = defaultdict(lambda: _LICENSE)
_CITATIONS = defaultdict(lambda: _CITATION)
_CITATIONS["python"] = """\
@inproceedings{amini-etal-2019-mathqa,
title={MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms},
author={Amini, Aida and
Gabriel, Saadia and
Lin, Shanchuan and
Koncel-Kedziorski, Rik and
Choi, Yejin and
Hajishirzi, Hannaneh},
booktitle={Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)},
month={jun},
year= {2019},
address = {Minneapolis, Minnesota},
publisher = {Association for Computational Linguistics},
url={https://aclanthology.org/N19-1245}
doi={10.18653/v1/N19-1245},
pages={2357--2367},
}
@article{mbxp_athiwaratkun2022,
title = {Multi-lingual Evaluation of Code Generation Models},
author = {Athiwaratkun, Ben and
Gouda, Sanjay Krishna and
Wang, Zijian and
Li, Xiaopeng and
Tian, Yuchen and
Tan, Ming
and Ahmad, Wasi Uddin and
Wang, Shiqi and
Sun, Qing and
Shang, Mingyue and
Gonugondla, Sujan Kumar and
Ding, Hantian and
Kumar, Varun and
Fulton, Nathan and
Farahani, Arash and
Jain, Siddhartha and
Giaquinto, Robert and
Qian, Haifeng and
Ramanathan, Murali Krishna and
Nallapati, Ramesh and
Ray, Baishakhi and
Bhatia, Parminder and
Sengupta, Sudipta and
Roth, Dan and
Xiang, Bing},
doi = {10.48550/ARXIV.2210.14868},
url = {https://arxiv.org/abs/2210.14868},
keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}"""
_GITHUB_ROOT = "https://raw.githubusercontent.com/amazon-science/mbxp-exec-eval/main/data/multilingual_mathqa/"
metadata_dict_path = requests.get(os.path.join(_GITHUB_ROOT, "metadata.json"))
metadata = json.loads(metadata_dict_path.text)
class MathQAXConfig(datasets.BuilderConfig):
"""BuilderConfig for MathQA-X."""
def __init__(
self,
language,
data_url,
citation,
version,
**kwargs,
):
super(MathQAXConfig, self).__init__(version=datasets.Version(f"{version}", ""), **kwargs)
self.name = language
self.data_url = data_url
self.citation = citation
class MathQAX(datasets.GeneratorBasedBuilder):
"""MathQA-X: An execution-based MathQA-X benchmark for code generation."""
BUILDER_CONFIGS = [
MathQAXConfig(
name=f"{language}",
language=f"{language}",
version=VERSION,
citation=_CITATIONS[f"{language}"],
description=f"MathQA-X benchmark in {language}",
data_url=os.path.join(_GITHUB_ROOT, language_path)
) for language, language_path in metadata.items()
]
def _info(self):
self.build_name = self.name
features = datasets.Features(
{
"task_id": datasets.Value("string"),
"language": datasets.Value("string"),
"prompt": datasets.Value("string"),
"description": datasets.Value("string"),
"test": datasets.Value("string"),
"entry_point": datasets.Value("string"),
"canonical_solution": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSES[self.config.name],
citation=_CITATIONS[self.config.name],
)
def _split_generators(
self, dl_manager
):
"""Returns SplitGenerators."""
data_file = dl_manager.download_and_extract(url_or_urls=self.config.data_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_file,
},
)
]
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath) as file:
data = []
for line in file:
jd = json.loads(line)
data.append(jd)
id_ = 0
for sample in data:
yield id_, sample
id_ += 1