Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
natural-language-inference
Size:
10K - 100K
ArXiv:
License:
File size: 15,742 Bytes
92bd6c5 fed2097 92bd6c5 fed2097 92bd6c5 48f281a 92bd6c5 f757483 e6605f9 f757483 e6605f9 f757483 e6605f9 f757483 e6605f9 f757483 e6605f9 f757483 e6605f9 f757483 e6605f9 f757483 e6605f9 f757483 e6605f9 f757483 e6605f9 f757483 e6605f9 f757483 92bd6c5 f757483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- ay
- bzd
- cni
- gn
- hch
- nah
- oto
- qu
- shp
- tar
license:
- unknown
multilinguality:
- multilingual
- translation
pretty_name: 'AmericasNLI: A NLI Corpus of 10 Indigenous Low-Resource Languages.'
size_categories:
- unknown
source_datasets:
- extended|xnli
task_categories:
- text-classification
task_ids:
- natural-language-inference
dataset_info:
- config_name: aym
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
0: entailment
1: neutral
2: contradiction
splits:
- name: validation
num_bytes: 117538
num_examples: 743
- name: test
num_bytes: 115259
num_examples: 750
download_size: 2256093
dataset_size: 232797
- config_name: bzd
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
0: entailment
1: neutral
2: contradiction
splits:
- name: validation
num_bytes: 143362
num_examples: 743
- name: test
num_bytes: 127684
num_examples: 750
download_size: 2256093
dataset_size: 271046
- config_name: cni
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
0: entailment
1: neutral
2: contradiction
splits:
- name: validation
num_bytes: 113264
num_examples: 658
- name: test
num_bytes: 116292
num_examples: 750
download_size: 2256093
dataset_size: 229556
- config_name: gn
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
0: entailment
1: neutral
2: contradiction
splits:
- name: validation
num_bytes: 115143
num_examples: 743
- name: test
num_bytes: 101956
num_examples: 750
download_size: 2256093
dataset_size: 217099
- config_name: hch
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
0: entailment
1: neutral
2: contradiction
splits:
- name: validation
num_bytes: 127974
num_examples: 743
- name: test
num_bytes: 120865
num_examples: 750
download_size: 2256093
dataset_size: 248839
- config_name: nah
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
0: entailment
1: neutral
2: contradiction
splits:
- name: validation
num_bytes: 50749
num_examples: 376
- name: test
num_bytes: 102961
num_examples: 738
download_size: 2256093
dataset_size: 153710
- config_name: oto
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
0: entailment
1: neutral
2: contradiction
splits:
- name: validation
num_bytes: 27018
num_examples: 222
- name: test
num_bytes: 119658
num_examples: 748
download_size: 2256093
dataset_size: 146676
- config_name: quy
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
0: entailment
1: neutral
2: contradiction
splits:
- name: validation
num_bytes: 125644
num_examples: 743
- name: test
num_bytes: 112758
num_examples: 750
download_size: 2256093
dataset_size: 238402
- config_name: shp
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
0: entailment
1: neutral
2: contradiction
splits:
- name: validation
num_bytes: 124508
num_examples: 743
- name: test
num_bytes: 118942
num_examples: 750
download_size: 2256093
dataset_size: 243450
- config_name: tar
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
0: entailment
1: neutral
2: contradiction
splits:
- name: validation
num_bytes: 139504
num_examples: 743
- name: test
num_bytes: 122632
num_examples: 750
download_size: 2256093
dataset_size: 262136
- config_name: all_languages
features:
- name: language
dtype: string
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
0: entailment
1: neutral
2: contradiction
splits:
- name: validation
num_bytes: 1129092
num_examples: 6457
- name: test
num_bytes: 1210591
num_examples: 7486
download_size: 2256093
dataset_size: 2339683
---
# Dataset Card for AmericasNLI
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [Needs More Information]
- **Repository:** https://github.com/nala-cub/AmericasNLI
- **Paper:** https://arxiv.org/abs/2104.08726
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
AmericasNLI is an extension of XNLI (Conneau et al., 2018) a natural language inference (NLI) dataset covering 15 high-resource languages to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
- aym
- bzd
- cni
- gn
- hch
- nah
- oto
- quy
- shp
- tar
## Dataset Structure
### Data Instances
#### all_languages
An example of the test split looks as follows:
```
{'language': 'aym', 'premise': "Ukhamaxa, janiw ukatuqits lup'kayätti, ukhamarus wali phiñasitayätwa, ukatx jupampiw mayamp aruskipañ qallanttha.", 'hypothesis': 'Janiw mayamp jupampix p
arlxapxti.', 'label': 2}
```
#### aym
An example of the test split looks as follows:
```
{'premise': "Ukhamaxa, janiw ukatuqits lup'kayätti, ukhamarus wali phiñasitayätwa, ukatx jupampiw mayamp aruskipañ qallanttha.", 'hypothesis': 'Janiw mayamp jupampix parlxapxti.', 'label
': 2}
```
#### bzd
An example of the test split looks as follows:
```
{'premise': "Bua', kèq ye' kũ e' bikeitsök erë ye' chkénãwã tã ye' ujtémĩne ie' tã páxlĩnẽ.", 'hypothesis': "Kèq ye' ùtẽnẽ ie' tã páxlĩ.", 'label': 2}
```
#### cni
An example of the test split looks as follows:
```
{'premise': 'Kameetsa, tee nokenkeshireajeroji, iro kantaincha tee nomateroji aisati nintajaro noñanatajiri iroakera.', 'hypothesis': 'Tee noñatajeriji.', 'label': 2}
```
#### gn
An example of the test split looks as follows:
```
{'premise': "Néi, ni napensaikurihína upéva rehe, ajepichaiterei ha añepyrûjey añe'ê hendive.", 'hypothesis': "Nañe'êvéi hendive.", 'label': 2}
```
#### hch
An example of the test split looks as follows:
```
{'premise': 'mu hekwa.', 'hypothesis': 'neuka tita xatawe m+k+ mat+a.', 'label': 2}
```
#### nah
An example of the test split looks as follows:
```
{'premise': 'Cualtitoc, na axnimoihliaya ino, nicualaniztoya queh naha nicamohuihqui', 'hypothesis': 'Ayoc nicamohuihtoc', 'label': 2}
```
#### oto
An example of the test split looks as follows:
```
{'premise': 'mi-ga, nin mibⴘy mbô̮nitho ane guenu, guedi mibⴘy nho ⴘnmⴘy xi di mⴘdi o ñana nen nⴘua manaigui', 'hypothesis': 'hin din bi pengui nen nⴘa', 'label': 2}
```
#### quy
An example of the test split looks as follows:
``` {'premise': 'Allinmi, manam chaypiqa hamutachkarqanichu, ichaqa manam allinchu tarikurqani chaymi kaqllamanta paywan rimarqani.', 'hypothesis': 'Manam paywanqa kaqllamantaqa rimarqani
.', 'label': 2}
```
#### shp
An example of the test split looks as follows:
```
{'premise': 'Jakon riki, ja shinanamara ea ike, ikaxbi kikin frustradara ea ike jakopira ea jabe yoyo iribake.', 'hypothesis': 'Eara jabe yoyo iribiama iki.', 'label': 2}
```
#### tar
An example of the test split looks as follows:
```
{'premise': 'Ga’lá ju, ke tási newalayé nejé echi kítira, we ne majáli, a’lí ko uchécho ne yua ku ra’íchaki.', 'hypothesis': 'Tási ne uchecho yua ra’ícha échi rejói.', 'label': 2}
```
### Data Fields
#### all_languages
- language: a multilingual string variable, with languages including ar, bg, de, el, en.
- premise: a multilingual string variable, with languages including ar, bg, de, el, en.
- hypothesis: a multilingual string variable, with possible languages including ar, bg, de, el, en.
- label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### aym
- premise: a string feature.
- hypothesis: a string feature.
- label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### bzd
- premise: a string feature.
- hypothesis: a string feature.
- label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### cni
- premise: a string feature.
- hypothesis: a string feature.
- label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### hch
- premise: a string feature.
- hypothesis: a string feature.
- label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### nah
- premise: a string feature.
- hypothesis: a string feature.
- label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### oto
- premise: a string feature.
- hypothesis: a string feature.
- label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### quy
- premise: a string feature.
- hypothesis: a string feature.
- label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### shp
- premise: a string feature.
- hypothesis: a string feature.
- label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
#### tar
- premise: a string feature.
- hypothesis: a string feature.
- label: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
### Data Splits
| Language | ISO | Family | Dev | Test |
|-------------------|-----|:-------------|-----:|-----:|
| all_languages | -- | -- | 6457 | 7486 |
| Aymara | aym | Aymaran | 743 | 750 |
| Ashaninka | cni | Arawak | 658 | 750 |
| Bribri | bzd | Chibchan | 743 | 750 |
| Guarani | gn | Tupi-Guarani | 743 | 750 |
| Nahuatl | nah | Uto-Aztecan | 376 | 738 |
| Otomi | oto | Oto-Manguean | 222 | 748 |
| Quechua | quy | Quechuan | 743 | 750 |
| Raramuri | tar | Uto-Aztecan | 743 | 750 |
| Shipibo-Konibo | shp | Panoan | 743 | 750 |
| Wixarika | hch | Uto-Aztecan | 743 | 750 |
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
The authors translate from the Spanish subset of XNLI.
> AmericasNLI is the translation of a subset of XNLI (Conneau et al., 2018). As translators between Spanish and the target languages are more frequently available than those for English, we translate from the Spanish version.
As per paragraph 3.1 of the [original paper](https://arxiv.org/abs/2104.08726).
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
The dataset comprises expert translations from Spanish XNLI.
> Additionally, some translators reported that code-switching is often used to describe certain topics, and, while many words without an exact equivalence in the target language are worked in through translation or interpretation, others are kept in Spanish. To minimize the amount of Spanish vocabulary in the translated examples, we choose sentences from genres that we judged to be relatively easy to translate into the target languages: “face-to-face,” “letters,” and “telephone.”
As per paragraph 3.1 of the [original paper](https://arxiv.org/abs/2104.08726).
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
```
@article{DBLP:journals/corr/abs-2104-08726,
author = {Abteen Ebrahimi and
Manuel Mager and
Arturo Oncevay and
Vishrav Chaudhary and
Luis Chiruzzo and
Angela Fan and
John Ortega and
Ricardo Ramos and
Annette Rios and
Ivan Vladimir and
Gustavo A. Gim{\'{e}}nez{-}Lugo and
Elisabeth Mager and
Graham Neubig and
Alexis Palmer and
Rolando A. Coto Solano and
Ngoc Thang Vu and
Katharina Kann},
title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of
Pretrained Multilingual Models in Truly Low-resource Languages},
journal = {CoRR},
volume = {abs/2104.08726},
year = {2021},
url = {https://arxiv.org/abs/2104.08726},
eprinttype = {arXiv},
eprint = {2104.08726},
timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [@fdschmidt93](https://github.com/fdschmidt93) for adding this dataset. |