Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
natural-language-inference
Size:
10K - 100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""AmericasNLI: A NLI Corpus of 10 Indigenous Low-Resource Languages.""" | |
import csv | |
import datasets | |
_CITATION = """ | |
@article{DBLP:journals/corr/abs-2104-08726, | |
author = {Abteen Ebrahimi and | |
Manuel Mager and | |
Arturo Oncevay and | |
Vishrav Chaudhary and | |
Luis Chiruzzo and | |
Angela Fan and | |
John Ortega and | |
Ricardo Ramos and | |
Annette Rios and | |
Ivan Vladimir and | |
Gustavo A. Gim{\'{e}}nez{-}Lugo and | |
Elisabeth Mager and | |
Graham Neubig and | |
Alexis Palmer and | |
Rolando A. Coto Solano and | |
Ngoc Thang Vu and | |
Katharina Kann}, | |
title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of | |
Pretrained Multilingual Models in Truly Low-resource Languages}, | |
journal = {CoRR}, | |
volume = {abs/2104.08726}, | |
year = {2021}, | |
url = {https://arxiv.org/abs/2104.08726}, | |
eprinttype = {arXiv}, | |
eprint = {2104.08726}, | |
timestamp = {Mon, 26 Apr 2021 17:25:10 +0200}, | |
biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib}, | |
bibsource = {dblp computer science bibliography, https://dblp.org} | |
} | |
""" | |
_DESCRIPTION = """\ | |
AmericasNLI is an extension of XNLI (Conneau et al., 2018) – a natural language inference (NLI) dataset covering 15 high-resource languages – to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). | |
""" | |
VERSION = datasets.Version("1.0.0", "") | |
_DEV_DATA_URL = "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv" | |
_TEST_DATA_URL = "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv" | |
_LANGUAGES = ("aym", "bzd", "cni", "gn", "hch", "nah", "oto", "quy", "shp", "tar") | |
class AmericasNLIConfig(datasets.BuilderConfig): | |
"""BuilderConfig for AmericasNLI.""" | |
def __init__(self, language: str, languages=None, **kwargs): | |
"""BuilderConfig for AmericasNLI. | |
Args: | |
language: One of aym, bzd, cni, gn, hch, nah, oto, quy, shp, tar or all_languages | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(AmericasNLIConfig, self).__init__(**kwargs) | |
self.language = language | |
if language != "all_languages": | |
self.languages = [language] | |
else: | |
self.languages = languages if languages is not None else _LANGUAGES | |
class AmericasNLI(datasets.GeneratorBasedBuilder): | |
"""TODO""" | |
VERSION = VERSION | |
BUILDER_CONFIG_CLASS = AmericasNLIConfig | |
BUILDER_CONFIGS = [ | |
AmericasNLIConfig( | |
name=lang, | |
language=lang, | |
version=VERSION, | |
description=f"Plain text import of AmericasNLI for the {lang} language", | |
) | |
for lang in _LANGUAGES | |
] + [ | |
AmericasNLIConfig( | |
name="all_languages", | |
language="all_languages", | |
version=VERSION, | |
description="Plain text import of AmericasNLI for all languages", | |
) | |
] | |
def _info(self): | |
if self.config.language == "all_languages": | |
features = datasets.Features( | |
{ | |
"language": datasets.Value("string"), | |
"premise": datasets.Value("string"), | |
"hypothesis": datasets.Value("string"), | |
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]), | |
} | |
) | |
else: | |
features = datasets.Features( | |
{ | |
"premise": datasets.Value("string"), | |
"hypothesis": datasets.Value("string"), | |
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
# No default supervised_keys (as we have to pass both premise | |
# and hypothesis as input). | |
supervised_keys=None, | |
homepage="https://github.com/nala-cub/AmericasNLI", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
dl_paths = dl_manager.download( | |
{ | |
"dev_data": _DEV_DATA_URL, | |
"test_data": _TEST_DATA_URL, | |
} | |
) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": dl_paths["dev_data"], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": dl_paths["test_data"], | |
}, | |
), | |
] | |
def _generate_examples(self, filepath: str): | |
"""This function returns the examples in the raw (text) form.""" | |
idx = 0 | |
with open(filepath, encoding="utf-8") as f: | |
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) | |
for row in reader: | |
if row["language"] == self.config.language: | |
yield idx, { | |
"premise": row["premise"], | |
"hypothesis": row["hypothesis"], | |
"label": row["label"], | |
} | |
idx += 1 | |
elif self.config.language == "all_languages": | |
yield idx, { | |
"language": row["language"], | |
"premise": row["premise"], | |
"hypothesis": row["hypothesis"], | |
"label": row["label"], | |
} | |
idx += 1 | |