Datasets:
File size: 12,474 Bytes
7312480 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Hong Kong Cantonese Corpus (HKCanCor)."""
from __future__ import absolute_import, division, print_function
import os
import xml.etree.ElementTree as ET
import datasets
_CITATION = """\
@article{luke2015hong,
author={Luke, Kang-Kwong and Wong, May LY},
title={The Hong Kong Cantonese corpus: design and uses},
journal={Journal of Chinese Linguistics},
year={2015},
pages={309-330},
month={12}
}
@misc{lee2020,
author = {Lee, Jackson},
title = {PyCantonese: Cantonese Linguistics and NLP in Python},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {https://github.com/jacksonllee/pycantonese},
commit = {1d58f44e1cb097faa69de6b617e1d28903b84b98}
}
"""
_DESCRIPTION = """\
The Hong Kong Cantonese Corpus (HKCanCor) comprise transcribed conversations
recorded between March 1997 and August 1998. It contains recordings of
spontaneous speech (51 texts) and radio programmes (42 texts),
which involve 2 to 4 speakers, with 1 text of monologue.
In total, the corpus contains around 230,000 Chinese words.
The text is word-segmented, annotated with part-of-speech (POS) tags and
romanised Cantonese pronunciation.
Romanisation scheme - Linguistic Society of Hong Kong (LSHK)
POS scheme - Peita-Fujitsu-Renmin Ribao (PRF) corpus (Duan et al., 2000),
with extended tags for Cantonese-specific phenomena added by
Luke and Wang (see original paper for details).
"""
_HOMEPAGE = "http://compling.hss.ntu.edu.sg/hkcancor/"
_LICENSE = "CC BY 4.0"
_URL = "http://compling.hss.ntu.edu.sg/hkcancor/data/hkcancor-utf8.zip"
class Hkcancor(datasets.GeneratorBasedBuilder):
"""Hong Kong Cantonese Corpus (HKCanCor)."""
VERSION = datasets.Version("1.0.0")
# Original tagset has 110 + tags and includes fine-grained annotations,
# e.g., distinguish morphemes vs non-moprhemes. For practical purposes
# (usability, comparing across datasets), Lee 2020 mapped HKCanCor tags
# to the Universal Dependencies 2.0 scheme. The following is adapted from:
# https://github.com/jacksonllee/pycantonese/blob/master/pycantonese/pos_tagging/hkcancor_to_ud.py
pos_map = {
"!": "PUNCT",
'"': "PUNCT",
"#": "X",
"'": "PUNCT",
",": "PUNCT",
"-": "PUNCT",
".": "PUNCT",
"...": "PUNCT",
"?": "PUNCT",
"A": "ADJ", # HKCanCor: Adjective
"AD": "ADV", # HKCanCor: Adjective as Adverbial
"AG": "ADJ", # HKCanCor: Adjective Morpheme
"AIRWAYS0": "PROPN",
"AN": "NOUN", # HKCanCor: Adjective with Nominal Function
"AND": "PROPN", # In one instance of "Chilli and Pepper"
"B": "ADJ", # HKCanCor: Non-predicate Adjective
"BG": "ADJ", # HKCanCor: Non-predicate Adjective Morpheme
"BEAN0": "PROPN", # In one instance of "Mr Bean"
"C": "CCONJ", # HKCanCor: Conjunction
"CENTRE0": "NOUN", # In one instance of "career centre"
"CG": "CCONJ",
"D": "ADV", # HKCanCor: Adverb
"D1": "ADV", # Most instances are gwai2 "ghost".
"DG": "ADV", # HKCanCor: Adverb Morpheme
"E": "INTJ", # HKCanCor: Interjection
"ECHO0": "PROPN", # In one instance of "Big Echo"
"F": "ADV", # HKCanCor: Directional Locality
"G": "X", # HKCanCor: Morpheme
"G1": "V", # The first A in the "A-not-AB" pattern, where AB is a verb.
"G2": "ADJ", # The first A in "A-not-AB", where AB is an adjective.
"H": "PROPN", # HKCanCor: Prefix (aa3 阿 followed by a person name)
"HILL0": "PROPN", # In "Benny Hill"
"I": "X", # HKCanCor: Idiom
"IG": "X",
"J": "NOUN", # HKCanCor: Abbreviation
"JB": "ADJ",
"JM": "NOUN",
"JN": "NOUN",
"JNS": "PROPN",
"JNT": "PROPN",
"JNZ": "PROPN",
"K": "X", # HKCanCor: Suffix (sing3 性 for nouns; dei6 地 for adverbs)
"KONG": "PROPN", # In "Hong Kong"
"L": "X", # Fixed Expression
"L1": "X",
"LG": "X",
"M": "NUM", # HKCanCor: Numeral
"MG": "X",
"MONTY0": "PROPN", # In "Full Monty"
"MOUNTAIN0": "PROPN", # In "Blue Mountain"
"N": "NOUN", # Common Noun
"N1": "DET", # HKCanCor: only used for ne1 呢; determiner
"NG": "NOUN",
"NR": "PROPN", # HKCanCor: Personal Name
"NS": "PROPN", # HKCanCor: Place Name
"NSG": "PROPN",
"NT": "PROPN", # HKCanCor: Organization Name
"NX": "NOUN", # HKCanCor: Nominal Character String
"NZ": "PROPN", # HKCanCor: Other Proper Noun
"O": "X", # HKCanCor: Onomatopoeia
"P": "ADP", # HKCanCor: Preposition
"PEPPER0": "PROPN", # In "Chilli and Pepper"
"Q": "NOUN", # HKCanCor: Classifier
"QG": "NOUN", # HKCanCor: Classifier Morpheme
"R": "PRON", # HKCanCor: Pronoun
"RG": "PRON", # HKCanCor: Pronoun Morpheme
"S": "NOUN", # HKCanCor: Space Word
"SOUND0": "PROPN", # In "Manchester's Sound"
"T": "ADV", # HKCanCor: Time Word
"TELECOM0": "PROPN", # In "Hong Kong Telecom"
"TG": "ADV", # HKCanCor: Time Word Morpheme
"TOUCH0": "PROPN", # In "Don't Touch" (a magazine)
"U": "PART", # HKCanCor: Auxiliary (e.g., ge3 嘅 after an attributive adj)
"UG": "PART", # HKCanCor: Auxiliary Morpheme
"U0": "PROPN", # U as in "Hong Kong U" (= The University of Hong Kong)
"V": "VERB", # HKCanCor: Verb
"V1": "VERB",
"VD": "ADV", # HKCanCor: Verb as Adverbial
"VG": "VERB",
"VK": "VERB",
"VN": "NOUN", # HKCanCor: Verb with Nominal Function
"VU": "AUX",
"VUG": "AUX",
"W": "PUNCT", # HKCanCor: Punctuation
"X": "X", # HKCanCor: Unclassified Item
"XA": "ADJ",
"XB": "ADJ",
"XC": "CCONJ",
"XD": "ADV",
"XE": "INTJ",
"XJ": "X",
"XJB": "PROPN",
"XJN": "NOUN",
"XJNT": "PROPN",
"XJNZ": "PROPN",
"XJV": "VERB",
"XJA": "X",
"XL1": "INTJ",
"XM": "NUM",
"XN": "NOUN",
"XNG": "NOUN",
"XNR": "PROPN",
"XNS": "PROPN",
"XNT": "PROPN",
"XNX": "NOUN",
"XNZ": "PROPN",
"XO": "X",
"XP": "ADP",
"XQ": "NOUN",
"XR": "PRON",
"XS": "PROPN",
"XT": "NOUN",
"XV": "VERB",
"XVG": "VERB",
"XVN": "NOUN",
"XX": "X",
"Y": "PART", # HKCanCor: Modal Particle
"YG": "PART", # HKCanCor: Modal Particle Morpheme
"Y1": "PART",
"Z": "ADJ", # HKCanCor: Descriptive
}
def _info(self):
pos_tags_prf = datasets.Sequence(datasets.features.ClassLabel(names=[tag for tag in self.pos_map.keys()]))
pos_tags_ud = datasets.Sequence(
datasets.features.ClassLabel(names=[tag for tag in set(self.pos_map.values())])
)
features = datasets.Features(
{
"conversation_id": datasets.Value("string"),
"speaker": datasets.Value("string"),
"turn_number": datasets.Value("int16"),
"tokens": datasets.Sequence(datasets.Value("string")),
"transcriptions": datasets.Sequence(datasets.Value("string")),
"pos_tags_prf": pos_tags_prf,
"pos_tags_ud": pos_tags_ud,
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = os.path.join(dl_manager.download_and_extract(_URL), "utf8")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_dir": data_dir,
"split": "train",
},
)
]
def _generate_examples(self, data_dir, split):
""" Yields examples. """
downloaded_files = [os.path.join(data_dir, fn) for fn in sorted(os.listdir(data_dir))]
for filepath in downloaded_files:
# Each file in the corpus contains one conversation
with open(filepath, encoding="utf-8") as f:
xml = f.read()
# Add dummy root node to form valid tree
xml = "<root>" + xml + "</root>"
tree = ET.fromstring(xml)
# Extract dialogue metadata
info = [line.strip() for line in tree.find("info").text.split("\n") if line and not line.endswith("END")]
tape_number = "".join(info[0].split("-")[1:])
date_recorded = "".join(info[1].split("-")[1:])
turn_number = -1
for sent in tree.findall("sent"):
for child in sent.iter():
if child.tag == "sent_head":
current_speaker = child.text.strip()[:-1]
turn_number += 1
elif child.tag == "sent_tag":
tokens = []
pos_prf = []
pos_ud = []
transcriptions = []
current_sentence = [w.strip() for w in child.text.split("\n") if w and not w.isspace()]
for w in current_sentence:
token_data = w.split("/")
tokens.append(token_data[0])
transcriptions.append(token_data[2])
prf_tag = token_data[1].upper()
ud_tag = self.pos_map.get(prf_tag, "X")
pos_prf.append(prf_tag)
pos_ud.append(ud_tag)
num_tokens = len(tokens)
num_pos_tags = len(pos_prf)
num_transcriptions = len(transcriptions)
assert len(tokens) == len(
pos_prf
), "Sizes do not match: {nw} vs {np} for tokens vs pos-tags in {fp}".format(
nw=num_tokens, np=num_pos_tags, fp=filepath
)
assert len(pos_prf) == len(
transcriptions
), "Sizes do not match: {np} vs {nt} for tokens vs pos-tags in {fp}".format(
np=num_pos_tags, nt=num_transcriptions, fp=filepath
)
# Corpus doesn't come with conversation-level ids, and
# multiple texts can correspond to the same tape number,
# date, and speakers.
# The following workaround prepends metadata with the
# first few transcriptions in the conversation
# to create an identifier.
id_from_transcriptions = "".join(transcriptions[:5])[:5].upper()
id_ = "{tn}-{rd}-{it}".format(tn=tape_number, rd=date_recorded, it=id_from_transcriptions)
yield id_, {
"conversation_id": id_,
"speaker": current_speaker,
"turn_number": turn_number,
"tokens": tokens,
"transcriptions": transcriptions,
"pos_tags_prf": pos_prf,
"pos_tags_ud": pos_ud,
}
|