napsternxg commited on
Commit
16cff4f
1 Parent(s): 4f3ddfe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -1
README.md CHANGED
@@ -94,4 +94,70 @@ size_categories:
94
  * query_class - category to which the query falls under
95
  * Annotated (product,relevance judgement) pairs, columns:
96
  * id - Unique ID for each annotation
97
- * label - Relevance label, one of 'Exact', 'Partial', or 'Irrelevant'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  * query_class - category to which the query falls under
95
  * Annotated (product,relevance judgement) pairs, columns:
96
  * id - Unique ID for each annotation
97
+ * label - Relevance label, one of 'Exact', 'Partial', or 'Irrelevant'
98
+
99
+ # Citation
100
+
101
+ Please cite this paper if you are building on top of or using this dataset:
102
+
103
+ ```text
104
+ @InProceedings{wands,
105
+ title = {WANDS: Dataset for Product Search Relevance Assessment},
106
+ author = {Chen, Yan and Liu, Shujian and Liu, Zheng and Sun, Weiyi and Baltrunas, Linas and Schroeder, Benjamin},
107
+ booktitle = {Proceedings of the 44th European Conference on Information Retrieval},
108
+ year = {2022},
109
+ numpages = {12}
110
+ }
111
+ ```
112
+
113
+
114
+ # Code for generating dataset
115
+
116
+
117
+ ```python
118
+ import pandas as pd
119
+ from datasets import Dataset
120
+ from datasets import DatasetDict, Dataset
121
+ from datasets import ClassLabel, load_from_disk, load_dataset, concatenate_datasets
122
+ from pathlib import Path
123
+
124
+ base_path = "https://github.com/wayfair/WANDS/raw/main/dataset/"
125
+
126
+ query_df = pd.read_csv(f"{base_path}/query.csv", sep='\t')
127
+ product_df = pd.read_csv(f"{base_path}/product.csv", sep='\t')
128
+ label_df = pd.read_csv(f"{base_path}/label.csv", sep='\t')
129
+
130
+ df_dataset = label_df.merge(
131
+ query_df, on="query_id"
132
+ ).merge(
133
+ product_df, on="product_id"
134
+ )
135
+
136
+ wands_class_label_feature = ClassLabel(num_classes=3, names=["Irrelevant", "Partial", "Exact"])
137
+ dataset = dataset.train_test_split(test_size=2/5, seed=1337)
138
+ dev_test_dataset = dataset["test"].train_test_split(test_size=1/2, seed=1337)
139
+ dataset = DatasetDict(
140
+ train=dataset["train"],
141
+ dev=dev_test_dataset["train"],
142
+ test=dev_test_dataset["test"],
143
+ )
144
+ """
145
+ DatasetDict({
146
+ train: Dataset({
147
+ features: ['id', 'query_id', 'product_id', 'label', 'query', 'query_class', 'product_name', 'product_class', 'category hierarchy', 'product_description', 'product_features', 'rating_count', 'average_rating', 'review_count'],
148
+ num_rows: 140068
149
+ })
150
+ dev: Dataset({
151
+ features: ['id', 'query_id', 'product_id', 'label', 'query', 'query_class', 'product_name', 'product_class', 'category hierarchy', 'product_description', 'product_features', 'rating_count', 'average_rating', 'review_count'],
152
+ num_rows: 46690
153
+ })
154
+ test: Dataset({
155
+ features: ['id', 'query_id', 'product_id', 'label', 'query', 'query_class', 'product_name', 'product_class', 'category hierarchy', 'product_description', 'product_features', 'rating_count', 'average_rating', 'review_count'],
156
+ num_rows: 46690
157
+ })
158
+ })
159
+ """
160
+
161
+ dataset.push_to_hub("napsternxg/wands")
162
+
163
+ ```