jordancaraballo commited on
Commit
a5f64cb
·
1 Parent(s): acf4d58

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -2
README.md CHANGED
@@ -1,7 +1,104 @@
1
  ---
2
  license: apache-2.0
 
 
3
  ---
4
-
5
  # Satvision Pretraining Dataset - Small
6
 
7
- This dataset repository houses the pretraining data for the Satvision pretrained transformers.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
  ---
 
6
  # Satvision Pretraining Dataset - Small
7
 
8
+ - **Developed by:** NASA GSFC CISTO Data Science Group
9
+ - **Model type:** Pre-trained visual transformer model
10
+ - **License:** Apache license 2.0
11
+
12
+ This dataset repository houses the pretraining data for the Satvision pretrained transformers.
13
+ This dataset was constructed using [webdatasets](https://github.com/webdataset/webdataset) to
14
+ limit the number of inodes used in HPC systems with limited shared storage. Each file has 100000
15
+ tiles, with pairs of image input and annotation. The data has been further compressed to ease
16
+ the download from HuggingFace.
17
+
18
+ SatelliteVision-Base (SatVis-B) is a pre-trained vision transformer based on the SwinV2 mode architecture.
19
+ The model is pre-trained on global MODIS surface reflectance data from which 1.99 million image chips were used. SatVis-B is pre-trained using
20
+ the masked-image-modeling (MIM) contrastive pre-training strategy. The MIM pre-training approach utilizes random
21
+ masking of the input geospatial image chip, using a linear layer to regress the raw pixel values of the masked
22
+ area with an l1 loss serving as the loss function.
23
+
24
+ Resolution of the pre-training MODIS chips was `128x128` with a window size of `16x16`. SatViz-B was pre-trained
25
+ for `800` epochs on 8x A100 GPUs and 12x V100 GPUs.
26
+
27
+
28
+ ### SatVision Transformer
29
+
30
+ **Pre-trained models pre-trained on MODIS-Small dataset**
31
+
32
+ | name | pre-train epochs | pre-train resolution | #params | pre-trained model |
33
+ | :---: | :---: | :---: | :---: | :---: |
34
+ | SatVision-Base | 800 | 128x128 | 84.5m | [checkpoint](https://huggingface.co/nasa-cisto-data-science-group/satvision-base/blob/main/ckpt_epoch_800.pth)/[config](https://github.com/nasa-nccs-hpda/pytorch-caney/blob/develop/examples/satvision/mim_pretrain_swinv2_satvision_base_192_window12_800ep.yaml) |
35
+
36
+ ## Getting Started with SatVision-Base
37
+
38
+ - **Training repository:** https://github.com/nasa-nccs-hpda/pytorch-caney
39
+ - **Pre-training dataset repository:** Coming soon!
40
+
41
+ ### Installation
42
+
43
+ If you have singularity installed
44
+ ```bash
45
+ $ git clone git@github.com:nasa-nccs-hpda/pytorch-caney.git
46
+ $ singularity build --sandbox pytorch-caney.sif docker://nasanccs/pytorch-caney:latest
47
+ # To shell into the container
48
+ $ singularity shell --nv -B <mounts> pytorch-caney.sif
49
+ ```
50
+
51
+ Anaconda installation
52
+ ```bash
53
+ $ git clone git@github.com:nasa-nccs-hpda/pytorch-caney.git
54
+ $ conda create -n satvision-env python==3.9
55
+ ```
56
+
57
+ ### Fine-tuning Satvision-Base
58
+ - Create config file [example config](https://github.com/nasa-nccs-hpda/pytorch-caney/blob/finetuning/examples/satvision/finetune_satvision_base_landcover5class_192_window12_100ep.yaml)
59
+ - Download checkpoint from this HF model repo
60
+ - `$ git clone git@github.com:nasa-nccs-hpda/pytorch-caney.git`
61
+ - Add a new pytorch dataset in pytorch-caney/pytorch_caney/data/datasets/
62
+ - Add new pytorch dataset to dict in pytorch-caney/pytorch_caney/data/datamodules/finetune_datamodule.py
63
+ ```bash
64
+ torchrun --nproc_per_node <NGPUS> pytorch-caney/pytorch_caney/pipelines/finetuning/finetune.py --cfg <config-file> --pretrained <path-to-pretrained> --dataset <dataset-name (key for new dataset)> --data-paths <path-to-data-dir> --batch-size <batch-size> --output <output-dir> --enable-amp
65
+ ```
66
+
67
+ ### Pre-training with pytorch-caney
68
+
69
+ ## Pre-training with SatVision-Base with Masked Image Modeling and pytorch-caney
70
+
71
+ To pre-train the swinv2 base model with masked image modeling pre-training, run:
72
+ ```bash
73
+ torchrun --nproc_per_node <NGPUS> pytorch-caney/pytorch_caney/pipelines/pretraining/mim.py --cfg <config-file> --dataset <dataset-name> --data-paths <path-to-data-subfolder-1> --batch-size <batch-size> --output <output-dir> --enable-amp
74
+ ```
75
+
76
+ For example to run on a compute node with 4 GPUs and a batch size of 128 on the MODIS SatVision pre-training dataset with a base swinv2 model, run:
77
+
78
+ ```bash
79
+ singularity shell --nv -B <mounts> /path/to/container/pytorch-caney-container
80
+ Singularity> export PYTHONPATH=$PWD:$PWD/pytorch-caney
81
+ Singularity> torchrun --nproc_per_node 4 pytorch-caney/pytorch_caney/pipelines/pretraining/mim.py --cfg pytorch-caney/examples/satvision/mim_pretrain_swinv2_satvision_base_192_window12_800ep.yaml --dataset MODIS --data-paths /explore/nobackup/projects/ilab/data/satvision/pretraining/training_* --batch-size 128 --output . --enable-amp
82
+ ```
83
+
84
+ ## SatVision-Base Pre-Training Datasets
85
+
86
+ | name | bands | resolution | #chips | meters-per-pixel |
87
+ | :---: | :---: | :---: | :---: | :---: |
88
+ | MODIS-Small | 7 | 128x128 | 1,994,131 | 500m |
89
+
90
+ ## Citing SatVision-Base
91
+
92
+ If this model helped your research, please cite `satvision-base` in your publications.
93
+
94
+ ```
95
+ @misc{satvision-base,
96
+ author = {Carroll, Mark and Li, Jian and Spradlin, Caleb and Caraballo-Vega, Jordan},
97
+ doi = {10.57967/hf/1017},
98
+ month = aug,
99
+ title = {{satvision-base}},
100
+ url = {https://huggingface.co/nasa-cisto-data-science-group/satvision-base},
101
+ repository-code = {https://github.com/nasa-nccs-hpda/pytorch-caney}
102
+ year = {2023}
103
+ }
104
+ ```