# coding=utf-8 # Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataset class for Food-101 dataset.""" import json from pathlib import Path import datasets _BASE_URL = "http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz" _HOMEPAGE = "https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/" _DESCRIPTION = ( "This dataset consists of 101 food categories, with 101'000 images. For " "each class, 250 manually reviewed test images are provided as well as 750" " training images. On purpose, the training images were not cleaned, and " "thus still contain some amount of noise. This comes mostly in the form of" " intense colors and sometimes wrong labels. All images were rescaled to " "have a maximum side length of 512 pixels." ) _CITATION = """\ @inproceedings{bossard14, title = {Food-101 -- Mining Discriminative Components with Random Forests}, author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc}, booktitle = {European Conference on Computer Vision}, year = {2014} } """ _NAMES = [ "apple_pie", "baby_back_ribs", "baklava", "beef_carpaccio", "beef_tartare", "beet_salad", "beignets", "bibimbap", "bread_pudding", "breakfast_burrito", "bruschetta", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare", "waffles", ] class Food101(datasets.GeneratorBasedBuilder): """Food-101 Images dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Value("string"), "label": datasets.features.ClassLabel(names=_NAMES), } ), supervised_keys=("image", "label"), homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): dl_path = Path(dl_manager.download_and_extract(_BASE_URL)) meta_path = dl_path / "food-101" / "meta" image_dir_path = dl_path / "food-101" / "images" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"json_file_path": meta_path / "train.json", "image_dir_path": image_dir_path}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"json_file_path": meta_path / "test.json", "image_dir_path": image_dir_path}, ), ] def _generate_examples(self, json_file_path, image_dir_path): """Generate images and labels for splits.""" labels = self.info.features["label"] data = json.loads(json_file_path.read_text()) for label, images in data.items(): for image_name in images: image = image_dir_path / f"{image_name}.jpg" features = {"image": str(image), "label": labels.encode_example(label)} yield image_name, features