snowflaketest / snowflaketest.py
rajistics's picture
Adding username and password into the configs
3fe9fc4
raw
history blame
2.86 kB
"""A dataset script that will hit Snowflake DB and return the results."""
import snowflake.connector as connector
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
class LoginConfig(datasets.BuilderConfig):
"""BuilderConfig for Login."""
def __init__(self, username, password, **kwargs):
"""BuilderConfig for SuperGLUE.
Args:
username: `string`, User name in Snowflake
password: `string`, Snowflake password.
**kwargs: keyword arguments forwarded to super.
"""
super(LoginConfig, self).__init__(version=datasets.Version("1.0.2"), **kwargs)
self.username = username
self.password = password
class NewDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
BUILDER_CONFIG_CLASS = LoginConfig
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.ClassLabel(names=['sadness', 'joy', 'love', 'anger', 'fear', 'surprise']),
}
),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
user = self.config.username
password = self.config.password
conn = connector.connect(
user=user,
password=password,
account='VUA92284',
warehouse='RAJIV',
database='HUGGINGFACE',
schema='PUBLIC',
role = 'RAJIV'
)
curr = conn.cursor()
sql = "select * from EMOTION"
curr = curr.execute(sql)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"cursor": curr},
)
]
def _generate_examples(self, cursor):
for i, ex in enumerate(cursor):
yield str(i), {
"text": ex[0],
"label": ex[1],
}
# Probably not necessary but just in case...we close the connection which we can find within the cursor object
cursor.connection.close()