import numpy as np | |
from scipy import signal | |
from .base import VHRMethod | |
class LGI(VHRMethod): | |
methodName = 'LGI' | |
def __init__(self, **kwargs): | |
super(LGI, self).__init__(**kwargs) | |
def apply(self, X): | |
#M = np.mean(X, axis=1) | |
#M = M[:, np.newaxis] | |
#Xzero = X - M # zero mean (row) | |
U,_,_ = np.linalg.svd(X) | |
S = U[:,0].reshape(1,-1) # array 2D shape (1,3) | |
P = np.identity(3) - np.matmul(S.T,S) | |
Y = np.dot(P,X) | |
bvp = Y[1,:] | |
return bvp |