PyVHR / ssr.py
navagg's picture
Upload 45 files
39b4c8c
import numpy as np
from .utils.SkinColorFilter import SkinColorFilter
from .base import VHRMethod
class SSR(VHRMethod):
methodName = 'SSR'
def __init__(self, **kwargs):
super(SSR, self).__init__(**kwargs)
def apply(self, X):
K = len(self.video.faceSignal)
l = self.video.frameRate
P = np.zeros(K) # 1 | dim: K
# store the eigenvalues Λ and the eigenvectors U at each frame
L = np.zeros((3, K), dtype='float64') # dim: 3xK
U = np.zeros((3, 3, K), dtype='float64') # dim: 3x3xK
for k in range(K):
n_roi = len(self.video.faceSignal[k])
VV = []
for r in range(n_roi):
V = self.video.faceSignal[k][r].astype(np.float64)
idx = V!=0
idx2 = np.logical_and(np.logical_and(idx[:,:,0], idx[:,:,1]), idx[:,:,2])
V_skin_only = V[idx2]
VV.append(V_skin_only)
VV = np.vstack(VV)
C = self.__build_correlation_matrix(VV) #dim: 3x3
# get: eigenvalues Λ, eigenvectors U
L[:,k], U[:,:,k] = self.__eigs(C) # dim Λ: 3 | dim U: 3x3
# build p and add it to the pulse signal P
if k >= l: # 5
tau = k - l # 5
p = self.__build_p(tau, k, l, U, L) # 6, 7, 8, 9, 10, 11 | dim: l
P[tau:k] += p # 11
if np.isnan(np.sum(P)):
print('NAN')
print(self.video.faceSignal[k])
bvp = P
return bvp
def __build_p(self, τ, k, l, U, Λ):
"""
builds P
Parameters
----------
k: int
The frame index
l: int
The temporal stride to use
U: numpy.ndarray
The eigenvectors of the c matrix (for all frames up to counter).
Λ: numpy.ndarray
The eigenvalues of the c matrix (for all frames up to counter).
Returns
-------
p: numpy.ndarray
The p signal to add to the pulse.
"""
# SR'
SR = np.zeros((3, l), 'float64') # dim: 3xl
z = 0
for t in range(τ, k, 1): # 6, 7
a = Λ[0, t]
b = Λ[1, τ]
c = Λ[2, τ]
d = U[:, 0, t].T
e = U[:, 1, τ]
f = U[:, 2, τ]
g = U[:, 1, τ].T
h = U[:, 2, τ].T
x1 = a / b
x2 = a / c
x3 = np.outer(e, g)
x4 = np.dot(d, x3)
x5 = np.outer(f, h)
x6 = np.dot(d, x5)
x7 = np.sqrt(x1)
x8 = np.sqrt(x2)
x9 = x7 * x4
x10 = x8 * x6
x11 = x9 + x10
SR[:, z] = x11 # 8 | dim: 3
z += 1
# build p and add it to the final pulse signal
s0 = SR[0, :] # dim: l
s1 = SR[1, :] # dim: l
p = s0 - ((np.std(s0) / np.std(s1)) * s1) # 10 | dim: l
p = p - np.mean(p) # 11
return p # dim: l
def __get_skin_pixels(self, skin_filter, face, do_skininit):
"""
get eigenvalues and eigenvectors, sort them.
Parameters
----------
C: numpy.ndarray
The RGB values of skin-colored pixels.
Returns
-------
Λ: numpy.ndarray
The eigenvalues of the correlation matrix
U: numpy.ndarray
The (sorted) eigenvectors of the correlation matrix
"""
ROI = face
if do_skininit:
skin_filter.estimate_gaussian_parameters(ROI)
skin_mask = skin_filter.get_skin_mask(ROI) # dim: wxh
V = ROI[skin_mask] # dim: (w×h)x3
V = V.astype('float64') / 255.0
return V
def __build_correlation_matrix(self, V):
# V dim: (W×H)x3
#V = np.unique(V, axis=0)
V_T = V.T # dim: 3x(W×H)
N = V.shape[0]
# build the correlation matrix
C = np.dot(V_T, V) # dim: 3x3
C = C / N
return C
def __eigs(self, C):
"""
get eigenvalues and eigenvectors, sort them.
Parameters
----------
C: numpy.ndarray
The RGB values of skin-colored pixels.
Returns
-------
Λ: numpy.ndarray
The eigenvalues of the correlation matrix
U: numpy.ndarray
The (sorted) eigenvectors of the correlation matrix
"""
# get eigenvectors and sort them according to eigenvalues (largest first)
L, U = np.linalg.eig(C) # dim Λ: 3 | dim U: 3x3
idx = L.argsort() # dim: 3x1
idx = idx[::-1] # dim: 1x3
L_ = L[idx] # dim: 3
U_ = U[:, idx] # dim: 3x3
return L_, U_