PyVHR / stats.py
navagg's picture
Upload 45 files
39b4c8c
import pandas as pd
import numpy as np
import os
import re
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import scipy.stats as ss
import scikit_posthocs as sp
from .stattests import friedman_aligned_ranks_test as ft
import Orange
class StatAnalysis():
""" Statistics analysis for multiple datasets and multiple VHR methods"""
def __init__(self, filepath='default'):
if os.path.isdir(filepath):
self.multidataset = True
self.path = filepath + "/"
self.datasetsList = os.listdir(filepath)
elif os.path.isfile(filepath):
self.multidataset = False
self.datasetsList = [filepath]
self.path = ""
else:
raise("Error: filepath is wrong!")
# -- get common methods
self.__getMethods()
self.metricSort = {'MAE':'min','RMSE':'min','CC':'max','PCC':'max'}
self.scale = {'MAE':'log','RMSE':'log','CC':'linear','PCC':'linear'}
def FriedmanTest(self, methods=None, metric='MAE'):
# -- Method(s)
if methods == None:
methods = self.methods
else:
if set(methods) <= set(self.methods):
raise("Some method is wrong!")
else:
self.methods = methods
# -- set metric
self.metric = metric
self.mag = self.metricSort[metric]
# -- get data from dataset(s)
# return Y = mat(n-datasets,k-methods)
if self.multidataset:
Y = self.__getData()
else:
Y = self.__getDataMono()
self.ndataset = Y.shape[0]
# -- Friedman test
t,p,ranks,piv = ft(Y)
self.avranks = list(np.divide(ranks, self.ndataset))
return t,p,ranks,piv,self.ndataset
def SignificancePlot(self, methods=None, metric='MAE'):
# -- Method(s)
if methods == None:
methods = self.methods
else:
if set(methods) <= set(self.methods):
raise("Some method is wrong!")
else:
self.methods = methods
# -- set metric
self.metric = metric
self.mag = self.metricSort[metric]
# -- get data from dataset(s)
if self.multidataset:
Y = self.__getData()
else:
Y = self.__getDataMono()
# -- Significance plot, a heatmap of p values
methodNames = [x.upper() for x in self.methods]
Ypd = pd.DataFrame(Y, columns=methodNames)
ph = sp.posthoc_nemenyi_friedman(Ypd)
cmap = ['1', '#fb6a4a', '#08306b', '#4292c6', '#c6dbef']
heatmap_args = {'cmap': cmap, 'linewidths': 0.25, 'linecolor': '0.5',
'clip_on': False, 'square': True, 'cbar_ax_bbox': [0.85, 0.35, 0.04, 0.3]}
plt.figure(figsize=(5,4))
sp.sign_plot(ph, cbar=True, **heatmap_args)
plt.title('p-vals')
fname = 'SP_' + self.metric + '.pdf'
plt.savefig(fname)
plt.show()
def computeCD(self, avranks=None, numDatasets=None, alpha='0.05', display=True):
"""
Returns critical difference for Nemenyi or Bonferroni-Dunn test according
to given alpha (either alpha=”0.05” or alpha=”0.1”) for average ranks and
number of tested datasets N. Test can be either “nemenyi” for for Nemenyi
two tailed test or “bonferroni-dunn” for Bonferroni-Dunn test.
See Orange package docs.
"""
if not numDatasets:
numDatasets = self.ndataset
if not avranks:
avranks = self.avranks
cd = Orange.evaluation.compute_CD(avranks, numDatasets, alpha=alpha) #tested on 30 datasets
if self.mag == 'min':
reverse = True
else:
reverse = False
methodNames = [x.upper() for x in self.methods]
if display:
Orange.evaluation.graph_ranks(avranks, methodNames, cd=cd, width=6, textspace=1.5, reverse=reverse)
name = 'CD Diagram (metric: ' + self.metric +')'
plt.title(name)
fname = 'CD_' + self.metric + '.pdf'
plt.savefig(fname)
plt.show()
return cd
def displayBoxPlot(self, methods=None, metric='MAE', scale=None, title=True):
# -- Method(s)
if methods == None:
methods = self.methods
else:
if set(methods) <= set(self.methods):
raise("Some method is wrong!")
else:
self.methods = methods
# -- set metric
self.metric = metric
self.mag = self.metricSort[metric]
if scale == None:
scale = self.scale[metric]
# -- get data from dataset(s)
if self.multidataset:
Y = self.__getData()
else:
Y = self.__getDataMono()
# -- display box plot
self.boxPlot(methods, metric, Y, scale=scale, title=title)
def boxPlot(self, methods, metric, Y, scale, title):
# Y = mat(n-datasets,k-methods)
k = len(methods)
if not (k == Y.shape[1]):
raise("error!")
offset = 50
fig = go.Figure()
methodNames = [x.upper() for x in self.methods]
for i in range(k):
yd = Y[:,i]
name = methodNames[i]
# -- set color for box
if metric == 'MAE' or metric == 'RMSE':
med = np.median(yd)
col = str(min(200,5*int(med)+offset))
if metric == 'CC' or metric == 'PCC':
med = 1-np.abs(np.median(yd))
col = str(int(200*med)+offset)
# -- add box
fig.add_trace(go.Box(
y=yd,
name=name,
boxpoints='all',
jitter=.7,
#whiskerwidth=0.2,
fillcolor="rgba("+col+","+col+","+col+",0.5)",
line_color="rgba(0,0,255,0.5)",
marker_size=2,
line_width=2)
)
gwidth = np.max(Y)/10
if title:
tit = "Metric: " + metric
top = 40
else:
tit=''
top = 10
fig.update_layout(
title=tit,
yaxis_type=scale,
xaxis_type="category",
yaxis=dict(
autorange=True,
showgrid=True,
zeroline=True,
#dtick=gwidth,
gridcolor='rgb(255,255,255)',
gridwidth=.1,
zerolinewidth=2,
titlefont=dict(size=30)
),
font=dict(
family="monospace",
size=16,
color='rgb(20,20,20)'
),
margin=dict(
l=20,
r=10,
b=20,
t=top,
),
paper_bgcolor='rgb(250, 250, 250)',
plot_bgcolor='rgb(243, 243, 243)',
showlegend=False
)
fig.show()
def saveStatsData(self, methods=None, metric='MAE', outfilename='statsData.csv'):
Y = self.getStatsData(methods=methods, metric=metric, printTable=False)
np.savetxt(outfilename, Y)
def getStatsData(self, methods=None, metric='MAE', printTable=True):
# -- Method(s)
if methods == None:
methods = self.methods
else:
if set(methods) <= set(self.methods):
raise("Some method is wrong!")
else:
self.methods = methods
# -- set metric
self.metric = metric
self.mag = self.metricSort[metric]
# -- get data from dataset(s)
# return Y = mat(n-datasets,k-methods)
if self.multidataset:
Y = self.__getData()
else:
Y = self.__getDataMono()
# -- add median and IQR
I = ss.iqr(Y,axis=0)
M = np.median(Y,axis=0)
Y = np.vstack((Y,M))
Y = np.vstack((Y,I))
if printTable:
methodNames = [x.upper() for x in self.methods]
dataseNames = self.datasetNames
dataseNames.append('Median')
dataseNames.append('IQR')
df = pd.DataFrame(Y, columns=methodNames, index=dataseNames)
display(df)
return Y
def __getDataMono(self):
mag = self.mag
metric = self.metric
methods = self.methods
frame = self.dataFrame[0]
# -- loop on methods
Y = []
for method in methods:
vals = frame[frame['method'] == method][metric]
if mag == 'min':
data = [v[np.argmin(v)] for v in vals]
else:
data = [v[np.argmax(v)] for v in vals]
Y.append(data)
return np.array(Y).T
def __getData(self):
mag = self.mag
metric = self.metric
methods = self.methods
# -- loop on datasets
Y = []
for frame in self.dataFrame:
# -- loop on methods
y = []
for method in methods:
vals = frame[frame['method'] == method][metric]
if mag == 'min':
data = [v[np.argmin(v)] for v in vals]
else:
data = [v[np.argmax(v)] for v in vals]
y.append(data)
y = np.array(y)
Y.append(np.mean(y,axis=1))
return np.array(Y)
def __getMethods(self):
mets = []
dataFrame = []
N = len(self.datasetsList)
# -- load dataframes
self.datasetNames = []
for file in self.datasetsList:
filename = self.path + file
self.datasetNames.append(file)
data = pd.read_hdf(filename)
mets.append(set(list(data['method'])))
dataFrame.append(data)
# -- method names intersection among datasets
methods = set(mets[0])
if N > 1:
for m in range(1,N-1):
methods.intersection(mets[m])
methods = list(methods)
methods.sort()
self.methods = methods
self.dataFrame = dataFrame