|
import os |
|
import re |
|
import warnings |
|
|
|
import dlib |
|
import matplotlib.pyplot as plt |
|
import skvideo |
|
import skvideo.io |
|
from matplotlib import patches |
|
|
|
from .pyramid import * |
|
from ..utils import printutils |
|
from ..utils.SkinDetect import SkinDetect |
|
|
|
|
|
class Video: |
|
""" |
|
Basic class for extracting ROIs from video frames |
|
""" |
|
|
|
facePadding = 0.2 |
|
filenameCompressed = "croppedFaces.npz" |
|
saveCropFaces = True |
|
loadCropFaces = True |
|
|
|
|
|
def __init__(self, filename, verb=0): |
|
self.filename = filename |
|
self.faces = np.array([]) |
|
self.processedFaces = np.array([]) |
|
self.faceSignal = np.array([]) |
|
|
|
self.verb = verb |
|
self.cropSize = [150, 150] |
|
self.typeROI = 'rect' |
|
self.detector = 'mtcnn' |
|
self.time_vid_start = 0 |
|
|
|
self.doEVM = False |
|
self.EVMalpha = 20 |
|
self.EVMlevels = 3 |
|
self.EVMlow = .8 |
|
self.EVMhigh = 4 |
|
|
|
|
|
self.rectCoords = [[0, 0, self.cropSize[0], self.cropSize[1]]] |
|
self.skinThresh_fix = [40, 80] |
|
self.skinThresh_adapt = 0.2 |
|
|
|
def getCroppedFaces(self, detector='mtcnn', extractor='skvideo', fps=30): |
|
""" Time is in seconds""" |
|
|
|
|
|
path, name = os.path.split(self.filename) |
|
filenamez = path + '/' + self.filenameCompressed |
|
|
|
self.detector = detector |
|
self.extractor = extractor |
|
|
|
|
|
if self.loadCropFaces and os.path.isfile(filenamez): |
|
self.cropped = True |
|
data = np.load(filenamez, allow_pickle=True) |
|
self.faces = data['a'] |
|
self.numFrames = int(data['b']) |
|
self.frameRate = int(data['c']) |
|
self.height = int(data['d']) |
|
self.width = int(data['e']) |
|
self.duration = float(data['f']) |
|
self.codec = data['g'] |
|
self.detector = data['h'] |
|
self.extractor = data['i'] |
|
self.cropSize = self.faces[0].shape |
|
|
|
if self.detector != detector: |
|
warnings.warn("\nWARNING!! Requested detector method is different from the saved one\n") |
|
|
|
|
|
else: |
|
self.cropped = False |
|
|
|
|
|
if os.path.isfile(self.filename): |
|
|
|
metadata = skvideo.io.ffprobe(self.filename) |
|
self.numFrames = int(eval(metadata["video"]["@nb_frames"])) |
|
self.height = int(eval(metadata["video"]["@height"])) |
|
self.width = int(eval(metadata["video"]["@width"])) |
|
self.frameRate = int(np.round(eval(metadata["video"]["@avg_frame_rate"]))) |
|
self.duration = float(eval(metadata["video"]["@duration"])) |
|
self.codec = metadata["video"]["@codec_name"] |
|
|
|
video = None |
|
if extractor == 'opencv': |
|
video = self.__opencvRead() |
|
else: |
|
video = skvideo.io.vread(self.filename) |
|
|
|
|
|
else: |
|
|
|
self.path = path |
|
video = self.__loadFrames() |
|
self.numFrames = len(video) |
|
self.height = video[0].shape[0] |
|
self.width = video[0].shape[1] |
|
self.frameRate = fps |
|
self.duration = self.numFrames/self.frameRate |
|
self.codec = 'raw' |
|
|
|
|
|
print('\n\n' + detector + '\n\n') |
|
self.__extractFace(video, method=detector) |
|
|
|
|
|
if self.saveCropFaces: |
|
np.savez_compressed(filenamez, a=self.faces, |
|
b=self.numFrames, c=self.frameRate, |
|
d=self.height, e=self.width, |
|
f=self.duration, g=self.codec, |
|
h=self.detector, i=self.extractor) |
|
|
|
if '1' in str(self.verb): |
|
self.printVideoInfo() |
|
if not self.cropped: |
|
print(' Extracted faces: not found! Detecting...') |
|
else: |
|
print(' Extracted faces: found! Loading...') |
|
|
|
def setMask(self, typeROI='rect', |
|
rectCoords=None, rectRegions=None, |
|
skinThresh_fix=None, skinThresh_adapt=None): |
|
self.typeROI = typeROI |
|
if self.typeROI == 'rect': |
|
if rectCoords is not None: |
|
|
|
self.rectCoords = rectCoords |
|
elif rectRegions is not None: |
|
|
|
self.rectCoords = self.__rectRegions2Coord(rectRegions) |
|
elif self.typeROI == 'skin_adapt' and skinThresh_adapt is not None: |
|
|
|
self.skinThresh_adapt = skinThresh_adapt |
|
elif self.typeROI == 'skin_fix' and skinThresh_fix is not None: |
|
|
|
self.skinThresh_fix = skinThresh_fix |
|
else: |
|
raise ValueError('Unrecognized type of ROI provided.') |
|
|
|
def extractSignal(self, frameSubset, count=None): |
|
if self.typeROI == 'rect': |
|
return self.__extractRectSignal(frameSubset) |
|
|
|
elif self.typeROI == 'skin_adapt' or self.typeROI == 'skin_fix': |
|
return self.__extractSkinSignal(frameSubset, count) |
|
|
|
def setEVM(self, enable=True, alpha=20, levels=3, low=.8, high=4): |
|
"""Eulerian Video Magnification""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.doEVM = enable |
|
|
|
if enable is True: |
|
self.EVMalpha = alpha |
|
self.EVMlevels = levels |
|
self.EVMlow = low |
|
self.EVMhigh = high |
|
|
|
def applyEVM(self): |
|
vid_data = gaussian_video(self.faces, self.EVMlevels) |
|
vid_data = temporal_bandpass_filter(vid_data, self.frameRate, |
|
freq_min=self.EVMlow, |
|
freq_max=self.EVMhigh) |
|
vid_data *= self.EVMalpha |
|
self.processedFaces = combine_pyramid_and_save(vid_data, |
|
self.faces, |
|
enlarge_multiple=3, |
|
fps=self.frameRate) |
|
|
|
def getMeanRGB(self): |
|
|
|
n_frames = len(self.faceSignal) |
|
n_roi = len(self.faceSignal[0]) |
|
rgb = np.zeros([3, n_frames]) |
|
|
|
for i in range(n_frames): |
|
mean_rgb = 0 |
|
|
|
for roi in self.faceSignal[i]: |
|
idx = roi != 0 |
|
idx2 = np.logical_and(np.logical_and(idx[:, :, 0], idx[:, :, 1]), idx[:, :, 2]) |
|
roi = roi[idx2] |
|
if len(roi) == 0: |
|
mean_rgb += 0 |
|
else: |
|
mean_rgb += np.mean(roi, axis=0) |
|
|
|
rgb[:, i] = mean_rgb/n_roi |
|
return rgb |
|
|
|
def printVideoInfo(self): |
|
print('\n * Video filename: %s' %self.filename) |
|
print(' Total frames: %s' %self.numFrames) |
|
print(' Duration: %s (sec)' %np.round(self.duration,2)) |
|
print(' Frame rate: %s (fps)' % self.frameRate) |
|
print(' Codec: %s' % self.codec) |
|
|
|
printOK = 1 |
|
try: |
|
f = self.numFrames |
|
except AttributeError: |
|
printOK = 0 |
|
|
|
if printOK: |
|
print(' Num frames: %s' % self.numFrames) |
|
print(' Height: %s' % self.height) |
|
print(' Width: %s' % self.height) |
|
print(' Detector: %s' % self.detector) |
|
print(' Extractor: %s' % self.extractor) |
|
|
|
def printROIInfo(self): |
|
print(' ROI type: ' + self.typeROI) |
|
if self.typeROI == 'rect': |
|
print(' Rect coords: ' + str(self.rectCoords)) |
|
elif self.typeROI == 'skin_fix': |
|
print(' Skin thresh: ' + str(self.skinThresh_fix)) |
|
elif self.typeROI == 'skin_adapt': |
|
print(' Skin thresh: ' + str(self.skinThresh_adapt)) |
|
|
|
def showVideo(self): |
|
from ipywidgets import interact |
|
import ipywidgets as widgets |
|
|
|
n = self.numFrames |
|
def view_image(frame): |
|
|
|
idx = frame-1 |
|
|
|
if self.processedFaces.size == 0: |
|
face = self.faces[idx] |
|
else: |
|
face = self.processedFaces[idx] |
|
|
|
if self.typeROI == 'rect': |
|
plt.imshow(face, interpolation='nearest') |
|
|
|
ax = plt.gca() |
|
|
|
for coord in self.rectCoords: |
|
rect = patches.Rectangle((coord[0],coord[1]), |
|
coord[2],coord[3],linewidth=1,edgecolor='y',facecolor='none') |
|
ax.add_patch(rect) |
|
|
|
elif self.typeROI == 'skin_fix': |
|
lower = np.array([0, self.skinThresh_fix[0], self.skinThresh_fix[1]], dtype = "uint8") |
|
upper = np.array([20, 255, 255], dtype = "uint8") |
|
converted = cv2.cvtColor(face, cv2.COLOR_RGB2HSV) |
|
skinMask = cv2.inRange(converted, lower, upper) |
|
skinFace = cv2.bitwise_and(face, face, mask=skinMask) |
|
plt.imshow(skinFace, interpolation='nearest') |
|
|
|
elif self.typeROI == 'skin_adapt': |
|
sd = SkinDetect(strength=self.skinThresh_adapt) |
|
sd.compute_stats(face) |
|
skinFace = sd.get_skin(face, filt_kern_size=7, verbose=False, plot=False) |
|
plt.imshow(skinFace, interpolation='nearest') |
|
|
|
interact(view_image, frame=widgets.IntSlider(min=1, max=n, step=1, value=1)) |
|
|
|
def __opencvRead(self): |
|
vid = cv2.VideoCapture(self.filename) |
|
frames = [] |
|
retval, frame = vid.read() |
|
while retval == True: |
|
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) |
|
retval, frame = vid.read() |
|
vid.release() |
|
return np.asarray(frames) |
|
|
|
def __extractRectSignal(self, frameSubset): |
|
""" Extract R,G,B values on all ROIs of a frame subset """ |
|
|
|
assert self.processedFaces.size > 0, "Faces are not processed yet! Please call runOffline first" |
|
|
|
self.faceSignal = [] |
|
|
|
i = 0 |
|
for r in frameSubset: |
|
face = self.processedFaces[r] |
|
H = face.shape[0] |
|
W = face.shape[1] |
|
|
|
|
|
rois = [] |
|
for roi in self.rectCoords: |
|
x = roi[0] |
|
y = roi[1] |
|
w = min(x + roi[2], W) |
|
h = min(y + roi[3], H) |
|
rois.append(face[y:h,x:w,:]) |
|
|
|
|
|
self.faceSignal.append(rois) |
|
i += 1 |
|
|
|
def __extractSkinSignal(self, frameSubset, count=None, frameByframe=False): |
|
""" Extract R,G,B values from skin-based roi of a frame subset """ |
|
|
|
assert self.processedFaces.size > 0, "Faces are not processed yet! Please call runOffline first" |
|
|
|
self.faceSignal = [] |
|
|
|
cp = self.cropSize |
|
skinFace = np.zeros([cp[0], cp[1], 3], dtype='uint8') |
|
|
|
|
|
for i, r in enumerate(frameSubset): |
|
face = self.processedFaces[r] |
|
|
|
if self.typeROI == 'skin_fix': |
|
assert len(self.skinThresh_fix) == 2, "Please provide 2 values for Fixed Skin Detector" |
|
lower = np.array([0, self.skinThresh_fix[0], self.skinThresh_fix[1]], dtype = "uint8") |
|
upper = np.array([20, 255, 255], dtype = "uint8") |
|
converted = cv2.cvtColor(face, cv2.COLOR_RGB2HSV) |
|
skinMask = cv2.inRange(converted, lower, upper) |
|
skinFace = cv2.bitwise_and(face, face, mask=skinMask) |
|
self.faceSignal.append([skinFace]) |
|
|
|
elif self.typeROI == 'skin_adapt': |
|
if count == 0 and i == 0: |
|
self.sd = SkinDetect(strength=self.skinThresh_adapt) |
|
self.sd.compute_stats(face) |
|
|
|
if frameByframe and i > 0: |
|
self.sd.compute_stats(face) |
|
|
|
skinFace = self.sd.get_skin(face, filt_kern_size=0, verbose=False, plot=False) |
|
|
|
self.faceSignal.append([skinFace]) |
|
|
|
def __extractFace(self, video, method, t_downsample_rate=2): |
|
|
|
|
|
|
|
|
|
if method == 'dlib': |
|
|
|
detector = dlib.get_frontal_face_detector() |
|
if os.path.exists("resources/shape_predictor_68_face_landmarks.dat"): |
|
file_predict = "resources/shape_predictor_68_face_landmarks.dat" |
|
elif os.path.exists("../resources/shape_predictor_68_face_landmarks.dat"): |
|
file_predict = "../resources/shape_predictor_68_face_landmarks.dat" |
|
predictor = dlib.shape_predictor(file_predict) |
|
self.faces = np.zeros([self.numFrames, self.cropSize[0], self.cropSize[1], 3], |
|
dtype='uint8') |
|
|
|
|
|
cp = self.cropSize |
|
self.faces = np.zeros([self.numFrames, cp[0], cp[1], 3], dtype='uint8') |
|
for i in range(self.numFrames): |
|
frame = video[i, :, :, :] |
|
|
|
self.numFaces = 0 |
|
facesRect = detector(frame, 0) |
|
if len(facesRect) > 0: |
|
|
|
self.numFaces += 1 |
|
rect = facesRect[0] |
|
x0 = rect.left() |
|
y0 = rect.top() |
|
w = rect.width() |
|
h = rect.height() |
|
|
|
|
|
shape = predictor(frame, rect) |
|
f = dlib.get_face_chip(frame, shape, size=self.cropSize[0], padding=self.facePadding) |
|
self.faces[i, :, :, :] = f.astype('uint8') |
|
|
|
if self.verb: printutils.printProgressBar(i, self.numFrames, prefix='Processing:', suffix='Complete', length=50) |
|
|
|
else: |
|
print("No face detected at frame %s",i) |
|
|
|
elif method == 'mtcnn_kalman': |
|
|
|
from mtcnn import MTCNN |
|
detector = MTCNN() |
|
|
|
h0 = None |
|
w0 = None |
|
crop = np.zeros([2, 2, 2]) |
|
skipped_frames = 0 |
|
|
|
while crop.shape[:2] != (h0,w0): |
|
if skipped_frames > 0: |
|
print("\nWARNING! Strange Face Crop... Skipping frame " + str(skipped_frames) + '...') |
|
frame = video[skipped_frames, :, :, :] |
|
detection = detector.detect_faces(frame) |
|
|
|
if len(detection) > 1: |
|
areas = [] |
|
for det in detection: |
|
areas.append(det['box'][2] * det['box'][3]) |
|
areas = np.array(areas) |
|
ia = np.argsort(areas) |
|
[x0, y0, w0, h0] = detection[ia[-1]]['box'] |
|
else: |
|
[x0, y0, w0, h0] = detection[0]['box'] |
|
|
|
w0 = 2*(int(w0/2)) |
|
h0 = 2*(int(h0/2)) |
|
|
|
crop = frame[y0:y0+h0, x0:x0+w0, :] |
|
|
|
skipped_frames += 1 |
|
|
|
self.cropSize = crop.shape[:2] |
|
|
|
if skipped_frames > 1: |
|
self.numFrames = self.numFrames - skipped_frames |
|
new_time_vid_start = skipped_frames / self.frameRate |
|
|
|
if new_time_vid_start > self.time_vid_start: |
|
self.time_vid_start = new_time_vid_start |
|
print("\tVideo now starts at " + str(self.time_vid_start) + " seconds\n") |
|
|
|
self.faces = np.zeros([self.numFrames, self.cropSize[0], self.cropSize[1], 3], dtype='uint8') |
|
self.faces[0, :, :, :] = crop |
|
|
|
|
|
state = np.array([int(x0+w0/2), int(y0+h0/2), 0, 0], dtype='float64') |
|
|
|
|
|
kalman = cv2.KalmanFilter(4, 2, 0) |
|
kalman.transitionMatrix = np.array([[1., 0., .1, 0.], |
|
[0., 1., 0., .1], |
|
[0., 0., 1., 0.], |
|
[0., 0., 0., 1.]]) |
|
kalman.measurementMatrix = 1. * np.eye(2, 4) |
|
kalman.processNoiseCov = 1e-5 * np.eye(4, 4) |
|
kalman.measurementNoiseCov = 1e-3 * np.eye(2, 2) |
|
kalman.errorCovPost = 1e-1 * np.eye(4, 4) |
|
kalman.statePost = state |
|
measurement = np.array([int(x0+w0/2), int(y0+h0/2)], dtype='float64') |
|
|
|
for i in range(skipped_frames, self.numFrames): |
|
frame = video[i, :, :, :] |
|
|
|
if i%t_downsample_rate == 0: |
|
detection = detector.detect_faces(frame) |
|
if len(detection) != 0: |
|
areas = [] |
|
if len(detection) > 1: |
|
for det in detection: |
|
areas.append(det['box'][2] * det['box'][3]) |
|
areas = np.array(areas) |
|
ia = np.argsort(areas) |
|
|
|
[x0, y0, w, h] = detection[ia[-1]]['box'] |
|
else: |
|
[x0, y0, w, h] = detection[0]['box'] |
|
|
|
not_found = False |
|
else: |
|
not_found = True |
|
|
|
prediction = kalman.predict() |
|
|
|
if i%t_downsample_rate == 0 and not not_found: |
|
measurement = np.array([x0+w/2, y0+h/2], dtype='float64') |
|
posterior = kalman.correct(measurement) |
|
[cx0, cy0, wn, hn] = posterior.astype(int) |
|
else: |
|
[cx0, cy0, wn, hn] = prediction.astype(int) |
|
|
|
|
|
crop = frame[int(cy0-h0/2):int(cy0+h0/2), int(cx0-w0/2):int(cx0+w0/2), :] |
|
|
|
if crop.shape[:2] != self.faces.shape[1:3]: |
|
print("WARNING! Strange face crop: video frame " + str(i) +" probably does not contain the whole face... Reshaping Crop\n") |
|
crop = cv2.resize(crop, (self.faces.shape[2], self.faces.shape[1])) |
|
|
|
self.faces[i, :, :, :] = crop.astype('uint8') |
|
|
|
elif method == 'mtcnn': |
|
|
|
from mtcnn import MTCNN |
|
|
|
detector = MTCNN() |
|
|
|
print("\nPerforming face detection...") |
|
|
|
h0 = None |
|
w0 = None |
|
crop = np.zeros([2, 2, 2]) |
|
skipped_frames = 0 |
|
|
|
while crop.shape[:2] != (h0, w0): |
|
if skipped_frames > 0: |
|
print("\nWARNING! Strange Face Crop... Skipping frame " + str(skipped_frames) + '...') |
|
frame = video[skipped_frames, :, :, :] |
|
detection = detector.detect_faces(frame) |
|
|
|
if len(detection) == 0: |
|
skipped_frames += 1 |
|
continue |
|
|
|
if len(detection) > 1: |
|
areas = [] |
|
for det in detection: |
|
areas.append(det['box'][2] * det['box'][3]) |
|
areas = np.array(areas) |
|
ia = np.argsort(areas) |
|
[x0, y0, w0, h0] = detection[ia[-1]]['box'] |
|
nose = detection[ia[-1]]['keypoints']['nose'] |
|
r_eye = detection[ia[-1]]['keypoints']['right_eye'] |
|
l_eye = detection[ia[-1]]['keypoints']['left_eye'] |
|
else: |
|
[x0, y0, w0, h0] = detection[0]['box'] |
|
nose = detection[0]['keypoints']['nose'] |
|
r_eye = detection[0]['keypoints']['right_eye'] |
|
l_eye = detection[0]['keypoints']['left_eye'] |
|
|
|
w0 = 2*(int(w0/2)) |
|
h0 = 2*(int(h0/2)) |
|
barycenter = (np.array(nose) + np.array(r_eye) + np.array(l_eye)) / 3. |
|
cy0 = barycenter[1] |
|
cx0 = barycenter[0] |
|
|
|
crop = frame[int(cy0-h0/2):int(cy0+h0/2), int(cx0-w0/2):int(cx0+w0/2), :] |
|
|
|
skipped_frames += 1 |
|
|
|
|
|
|
|
|
|
self.cropSize = crop.shape[:2] |
|
|
|
if skipped_frames > 1: |
|
self.numFrames = self.numFrames - skipped_frames |
|
new_time_vid_start = skipped_frames / self.frameRate |
|
|
|
if new_time_vid_start > self.time_vid_start: |
|
self.time_vid_start = new_time_vid_start |
|
print("\tVideo now starts at " + str(self.time_vid_start) + " seconds\n") |
|
|
|
self.faces = np.zeros([self.numFrames, self.cropSize[0], self.cropSize[1], 3], dtype='uint8') |
|
self.faces[0, :, :, :] = crop |
|
|
|
old_detection = detection |
|
for i in range(skipped_frames,self.numFrames): |
|
|
|
frame = video[i, :, :, :] |
|
|
|
new_detection = detector.detect_faces(frame) |
|
areas = [] |
|
|
|
if len(new_detection) == 0: |
|
new_detection = old_detection |
|
|
|
if len(new_detection) > 1: |
|
for det in new_detection: |
|
areas.append(det['box'][2] * det['box'][3]) |
|
areas = np.array(areas) |
|
ia = np.argsort(areas) |
|
|
|
[x0, y0, w, h] = new_detection[ia[-1]]['box'] |
|
nose = new_detection[ia[-1]]['keypoints']['nose'] |
|
r_eye = new_detection[ia[-1]]['keypoints']['right_eye'] |
|
l_eye = new_detection[ia[-1]]['keypoints']['left_eye'] |
|
else: |
|
[x0, y0, w, h] = new_detection[0]['box'] |
|
nose = new_detection[0]['keypoints']['nose'] |
|
r_eye = new_detection[0]['keypoints']['right_eye'] |
|
l_eye = new_detection[0]['keypoints']['left_eye'] |
|
|
|
barycenter = (np.array(nose) + np.array(r_eye) + np.array(l_eye)) / 3. |
|
cy0 = barycenter[1] |
|
cx0 = barycenter[0] |
|
|
|
crop = frame[int(cy0-h0/2):int(cy0+h0/2), int(cx0-w0/2):int(cx0+w0/2), :] |
|
|
|
if crop.shape[:2] != self.faces.shape[1:3]: |
|
print("WARNING! Strange face crop: video frame " + str(i) +" probably does not contain the whole face... Reshaping Crop\n") |
|
crop = cv2.resize(crop, (self.faces.shape[2], self.faces.shape[1])) |
|
|
|
self.faces[i, :, :, :] = crop.astype('uint8') |
|
old_detection = new_detection |
|
|
|
|
|
printutils.printProgressBar(i, self.numFrames, prefix = 'Processing:', suffix = 'Complete', length = 50) |
|
else: |
|
|
|
raise ValueError('Unrecognized Face detection method. Please use "dlib" or "mtcnn"') |
|
|
|
def __rectRegions2Coord(self, rectRegions): |
|
|
|
|
|
|
|
|
|
|
|
assert len(self.faces) > 0, "Faces not found, please run getCroppedFaces first!" |
|
|
|
w = self.faces[0].shape[1] |
|
h = self.faces[0].shape[0] |
|
|
|
coords = [] |
|
|
|
for roi in rectRegions: |
|
if roi == 'forehead': |
|
if self.detector == 'dlib': |
|
x_f = int(w * .34) |
|
y_f = int(h * .05) |
|
w_f = int(w * .32) |
|
h_f = int(h * .05) |
|
|
|
elif (self.detector == 'mtcnn') or (self.detector == 'mtcnn_kalman'): |
|
x_f = int(w * .20) |
|
y_f = int(h * .10) |
|
w_f = int(w * .60) |
|
h_f = int(h * .12) |
|
|
|
coords.append([x_f, y_f, w_f, h_f]) |
|
|
|
elif roi == 'lcheek': |
|
if self.detector == 'dlib': |
|
x_c = int(w * .22) |
|
y_c = int(h * .40) |
|
w_c = int(w * .14) |
|
h_c = int(h * .11) |
|
|
|
elif (self.detector == 'mtcnn') or (self.detector == 'mtcnn_kalman'): |
|
x_c = int(w * .15) |
|
y_c = int(h * .54) |
|
w_c = int(w * .15) |
|
h_c = int(h * .11) |
|
|
|
coords.append([x_c, y_c, w_c, h_c]) |
|
|
|
elif roi == 'rcheek': |
|
if self.detector == 'dlib': |
|
x_c = int(w * .64) |
|
y_c = int(h * .40) |
|
w_c = int(w * .14) |
|
h_c = int(h * .11) |
|
|
|
elif (self.detector == 'mtcnn') or (self.detector == 'mtcnn_kalman'): |
|
x_c = int(w * .70) |
|
y_c = int(h * .54) |
|
w_c = int(w * .15) |
|
h_c = int(h * .11) |
|
|
|
coords.append([x_c, y_c, w_c, h_c]) |
|
|
|
elif roi == 'nose': |
|
if self.detector == 'dlib': |
|
x_c = int(w * .40) |
|
y_c = int(h * .35) |
|
w_c = int(w * .20) |
|
h_c = int(h * .05) |
|
|
|
elif (self.detector == 'mtcnn') or (self.detector == 'mtcnn_kalman'): |
|
x_c = int(w * .35) |
|
y_c = int(h * .50) |
|
w_c = int(w * .30) |
|
h_c = int(h * .08) |
|
|
|
coords.append([x_c, y_c, w_c, h_c]) |
|
|
|
else: |
|
raise ValueError('Unrecognized rect region name.') |
|
|
|
return coords |
|
|
|
def __sort_nicely(self, l): |
|
""" Sort the given list in the way that humans expect. |
|
""" |
|
convert = lambda text: int(text) if text.isdigit() else text |
|
alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ] |
|
l.sort( key=alphanum_key ) |
|
return l |
|
|
|
def __loadFrames(self): |
|
|
|
|
|
cmpFile = os.path.join(self.path, self.filenameCompressed) |
|
if os.path.exists(cmpFile): |
|
os.remove(cmpFile) |
|
|
|
|
|
f_names = self.__sort_nicely(os.listdir(self.path)) |
|
frames = [] |
|
for n in range(len(f_names)): |
|
filename = os.path.join(self.path, f_names[n]) |
|
frames.append(cv2.imread(filename)[:, :, ::-1]) |
|
|
|
frames = np.array(frames) |
|
return frames |
|
|
|
|