Datasets:
File size: 3,730 Bytes
27a8040 d87417b 27a8040 d87417b 27a8040 d87417b 27a8040 d87417b 27a8040 d87417b f6c83e9 772ac89 f6c83e9 27a8040 772ac89 d8e1b39 772ac89 80a7caa 772ac89 43470bf f5fed84 43470bf d8e1b39 772ac89 c90368d 43470bf 772ac89 d8e1b39 772ac89 d8e1b39 772ac89 d8e1b39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
dataset_info:
features:
- name: q_id
dtype: int64
- name: question
dtype: string
- name: answer
dtype: string
- name: q_word
dtype: string
- name: q_topic
dtype: string
- name: fine_class
dtype: string
- name: class
dtype: string
- name: ontology_concept
dtype: string
- name: ontology_concept2
dtype: string
- name: source
dtype: string
- name: q_src_id
dtype: int64
- name: quetion_type
dtype: string
- name: chapter_name
dtype: string
- name: chapter_no
dtype: int64
- name: verse
sequence: string
- name: question_en
dtype: string
- name: answer_en
dtype: string
- name: q_word_en
dtype: string
- name: q_topic_en
dtype: string
- name: fine_class_en
dtype: string
- name: class_en
dtype: string
- name: ontology_concept_en
dtype: string
- name: chapter_name_en
dtype: string
- name: context
dtype: string
splits:
- name: train
num_bytes: 2172733.7563368767
num_examples: 978
- name: test
num_bytes: 544294.2436631235
num_examples: 245
download_size: 1478325
dataset_size: 2717028
license: cc-by-4.0
task_categories:
- question-answering
pretty_name: Quran Question Answer with Context
language:
- ar
- en
tags:
- islam
- quran
- arabic
---
# Dataset Card for "quran-question-answer-context"
## Dataset Summary
Translated the original dataset from Arabic to English and added the Surah ayahs to the `context` column.
## Usage
```python
from datasets import load_dataset
dataset = load_dataset("nazimali/quran-question-answer-context")
```
```python
DatasetDict({
train: Dataset({
features: ['q_id', 'question', 'answer', 'q_word', 'q_topic', 'fine_class', 'class', 'ontology_concept', 'ontology_concept2', 'source', 'q_src_id', 'quetion_type', 'chapter_name', 'chapter_no', 'verse', 'question_en', 'answer_en', 'q_word_en', 'q_topic_en', 'fine_class_en', 'class_en', 'ontology_concept_en', 'chapter_name_en', 'context'],
num_rows: 978
})
test: Dataset({
features: ['q_id', 'question', 'answer', 'q_word', 'q_topic', 'fine_class', 'class', 'ontology_concept', 'ontology_concept2', 'source', 'q_src_id', 'quetion_type', 'chapter_name', 'chapter_no', 'verse', 'question_en', 'answer_en', 'q_word_en', 'q_topic_en', 'fine_class_en', 'class_en', 'ontology_concept_en', 'chapter_name_en', 'context'],
num_rows: 245
})
})
```
## Translation Info
1. Translated the Arabic questions/concept columns to English with [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en)
2. Used `en-yusufali` translations for ayas [M-AI-C/quran-en-tafssirs](https://huggingface.co/datasets/M-AI-C/quran-en-tafssirs)
3. Renamed Surahs with [kheder/quran](https://huggingface.co/datasets/kheder/quran)
4. Added the ayahs that helped answer the questions
- Split the `ayah` columns string into a list of integers
- Concactenated the Surah:Ayah pairs into a sentence to the `context` column
Columns with the suffix `_en` contain the translations of the original columns.
## TODO
The `context` column has some `null` values that needs to be investigated and fixed
## Initial Data Collection
The original dataset is from **[Annotated Corpus of Arabic Al-Quran Question and Answer](https://archive.researchdata.leeds.ac.uk/464/)**
## Licensing Information
Original dataset [license](https://archive.researchdata.leeds.ac.uk/464/): **Creative Commons Attribution 4.0 International (CC BY 4.0)**
### Contributions
Original paper authors: Alqahtani, Mohammad and Atwell, Eric (2018) Annotated Corpus of Arabic Al-Quran Question and Answer. University of Leeds. https://doi.org/10.5518/356 |