|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
from pathlib import Path |
|
|
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {A great new dataset}, |
|
author={huggingface, Inc. |
|
}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
This new dataset is designed to solve this great NLP task and is crafted with a lot of care. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "" |
|
|
|
|
|
_LICENSE = "MIT License" |
|
|
|
ROOT = Path("data") |
|
_URLS = { |
|
"validation": list((ROOT / "val").glob("*.csv")), |
|
"dev": list((ROOT / "dev").glob("*.csv")), |
|
"test": list((ROOT / "test").glob("*.csv")), |
|
} |
|
_URL = "https://people.eecs.berkeley.edu/~hendrycks/data.tar" |
|
CONFIG_NAMES = [ |
|
"abstract_algebra", |
|
"high_school_mathematics", |
|
"nutrition", |
|
"high_school_macroeconomics", |
|
"world_religions", |
|
"high_school_statistics", |
|
"clinical_knowledge", |
|
"medical_genetics", |
|
"college_physics", |
|
"professional_law", |
|
"virology", |
|
"astronomy", |
|
"moral_disputes", |
|
"electrical_engineering", |
|
"high_school_psychology", |
|
"public_relations", |
|
"college_biology", |
|
"college_mathematics", |
|
"econometrics", |
|
"anatomy", |
|
"miscellaneous", |
|
"international_law", |
|
"management", |
|
"prehistory", |
|
"formal_logic", |
|
"high_school_world_history", |
|
"conceptual_physics", |
|
"high_school_microeconomics", |
|
"high_school_computer_science", |
|
"elementary_mathematics", |
|
"human_aging", |
|
"logical_fallacies", |
|
"sociology", |
|
"us_foreign_policy", |
|
"moral_scenarios", |
|
"human_sexuality", |
|
"high_school_us_history", |
|
"computer_security", |
|
"marketing", |
|
"high_school_european_history", |
|
"security_studies", |
|
"college_computer_science", |
|
"jurisprudence", |
|
"high_school_geography", |
|
"high_school_physics", |
|
"philosophy", |
|
"machine_learning", |
|
"high_school_chemistry", |
|
"high_school_biology", |
|
"professional_accounting", |
|
"business_ethics", |
|
"professional_psychology", |
|
"high_school_government_and_politics", |
|
"college_medicine", |
|
"professional_medicine", |
|
"college_chemistry", |
|
"global_facts" |
|
] |
|
|
|
|
|
class NewDataset(datasets.GeneratorBasedBuilder): |
|
"""TODO: Short description of my dataset.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name=task, |
|
version=datasets.Version("1.1.0"), |
|
description=f"Task {task}" |
|
) |
|
for task in CONFIG_NAMES |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = CONFIG_NAMES[0] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"question": datasets.Value("string"), |
|
"option1": datasets.Value("string"), |
|
"option2": datasets.Value("string"), |
|
"option3": datasets.Value("string"), |
|
"option4": datasets.Value("string"), |
|
"answer": datasets.Value("string") |
|
|
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URL) |
|
data_dir = Path(data_dir) / "data" |
|
return [ |
|
datasets.SplitGenerator( |
|
name="dev", |
|
gen_kwargs={ |
|
"filename": data_dir / f"dev/{self.config.name}_dev.csv", |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filename": data_dir / f"val/{self.config.name}_val.csv", |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filename": data_dir / f"test/{self.config.name}_test.csv", |
|
} |
|
) |
|
] |
|
|
|
|
|
def _generate_examples(self, filename): |
|
|
|
with open(filename, encoding="utf-8") as f: |
|
csv_reader = csv.reader(f, delimiter=",") |
|
for id_, row in enumerate(csv_reader): |
|
|
|
yield id_, { |
|
"question": str(row[0]), |
|
"option1": str(row[1]), |
|
"option2": str(row[2]), |
|
"option3": str(row[3]), |
|
"option4": str(row[4]), |
|
"answer": str(row[5]), |
|
} |