Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Languages:
Thai
Size:
100K - 1M
Tags:
word-tokenization
License:
File size: 5,600 Bytes
f5baa18 c554c2d f5baa18 c554c2d f5baa18 c554c2d f5baa18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import os
from functools import reduce
from pathlib import Path
import datasets
_CITATION = """\
@inproceedings{kosawat2009best,
title={BEST 2009: Thai word segmentation software contest},
author={Kosawat, Krit and Boriboon, Monthika and Chootrakool, Patcharika and Chotimongkol, Ananlada and Klaithin, Supon and Kongyoung, Sarawoot and Kriengket, Kanyanut and Phaholphinyo, Sitthaa and Purodakananda, Sumonmas and Thanakulwarapas, Tipraporn and others},
booktitle={2009 Eighth International Symposium on Natural Language Processing},
pages={83--88},
year={2009},
organization={IEEE}
}
@inproceedings{boriboon2009best,
title={Best corpus development and analysis},
author={Boriboon, Monthika and Kriengket, Kanyanut and Chootrakool, Patcharika and Phaholphinyo, Sitthaa and Purodakananda, Sumonmas and Thanakulwarapas, Tipraporn and Kosawat, Krit},
booktitle={2009 International Conference on Asian Language Processing},
pages={322--327},
year={2009},
organization={IEEE}
}
"""
_LICENSE = "CC-BY-NC-SA 3.0"
_DESCRIPTION = """\
`best2009` is a Thai word-tokenization dataset from encyclopedia, novels, news and articles by
[NECTEC](https://www.nectec.or.th/) (148,995/2,252 lines of train/test). It was created for
[BEST 2010: Word Tokenization Competition](https://thailang.nectec.or.th/archive/indexa290.html?q=node/10).
The test set answers are not provided publicly.
"""
class Best2009Config(datasets.BuilderConfig):
def __init__(self, **kwargs):
"""BuilderConfig
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(Best2009Config, self).__init__(**kwargs)
class Best2009(datasets.GeneratorBasedBuilder):
_DOWNLOAD_URL = "https://archive.org/download/best_dataset/data.zip"
_TRAIN_FOLDER = "train"
_TEST_FOLDER = "test"
_USELESS_TAGS = {"<NE>": "", "</NE>": "", "<AB>": "", "</AB>": ""}
# character type mapping from https://github.com/rkcosmos/deepcut/blob/master/deepcut/utils.py
_CHAR_TYPES_DICT = {
"กขฃคฆงจชซญฎฏฐฑฒณดตถทธนบปพฟภมยรลวศษสฬอ": "c",
"ฅฉผฟฌหฮ": "n",
"ะาำิีืึุู": "v", # า ะ ำ ิ ี ึ ื ั ู ุ
"เแโใไ": "w",
"่้๊๋": "t", # วรรณยุกต์ ่ ้ ๊ ๋
"์ๆฯ.": "s", # ์ ๆ ฯ .
"0123456789๑๒๓๔๕๖๗๘๙": "d",
'"': "q",
"‘": "q",
"’": "q",
"'": "q",
" ": "p",
"abcdefghijklmnopqrstuvwxyz": "s_e",
"ABCDEFGHIJKLMNOPQRSTUVWXYZ": "b_e",
}
_CHAR_TYPE_FLATTEN = {}
for ks, v in _CHAR_TYPES_DICT.items():
for k in ks:
_CHAR_TYPE_FLATTEN[k] = v
_CHAR_TYPES = ["b_e", "c", "d", "n", "o", "p", "q", "s", "s_e", "t", "v", "w"]
BUILDER_CONFIGS = [
Best2009Config(
name="best2009",
version=datasets.Version("1.0.0"),
description=_DESCRIPTION,
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"fname": datasets.Value("string"),
"char": datasets.Sequence(datasets.Value("string")),
"char_type": datasets.Sequence(datasets.features.ClassLabel(names=self._CHAR_TYPES)),
"is_beginning": datasets.Sequence(datasets.features.ClassLabel(names=["neg", "pos"])),
}
),
supervised_keys=None,
homepage="https://aiforthai.in.th/",
citation=_CITATION,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
arch_path = dl_manager.download_and_extract(self._DOWNLOAD_URL)
data_dir = os.path.join(arch_path, "data")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": os.path.join(data_dir, self._TRAIN_FOLDER), "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": os.path.join(data_dir, self._TEST_FOLDER), "split": "train"},
),
]
def _generate_examples(self, filepath, split):
for file_idx, fname in enumerate(sorted(Path(filepath).rglob("*.txt"))):
with open(fname, encoding="utf-8") as f:
for line_idx, line in enumerate(f):
chars = []
char_types = []
is_beginnings = []
# replace useless tokens
line = reduce(lambda a, kv: a.replace(*kv), self._USELESS_TAGS.items(), line)
# tokens are pipe separated
splits = line.split("|")
for token in splits:
for i in range(len(token)):
chars.append(token[i])
char_types.append(self._CHAR_TYPE_FLATTEN.get(token[i], "o"))
is_beginning = 1 if i == 0 else 0
is_beginnings.append(is_beginning)
yield f"{file_idx}_{line_idx}", {
"fname": fname.name,
"char": chars,
"char_type": char_types,
"is_beginning": is_beginnings if split == "train" else [0 for i in range(len(chars))],
}
|