Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Languages:
Thai
Size:
100K - 1M
Tags:
word-tokenization
License:
File size: 8,687 Bytes
f5baa18 38c1d5f f5baa18 38c1d5f bb9d105 f5baa18 b9452a3 f5baa18 ea1bd4c a1deac4 c43172e a1deac4 b3962be 44188b0 b3962be 44188b0 b3962be e25239f b3962be f5baa18 c554c2d f5baa18 4778429 f5baa18 4778429 a1deac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- th
license:
- cc-by-nc-sa-3.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- token-classification
task_ids: []
pretty_name: best2009
tags:
- word-tokenization
dataset_info:
features:
- name: fname
dtype: string
- name: char
sequence: string
- name: char_type
sequence:
class_label:
names:
'0': b_e
'1': c
'2': d
'3': n
'4': o
'5': p
'6': q
'7': s
'8': s_e
'9': t
'10': v
'11': w
- name: is_beginning
sequence:
class_label:
names:
'0': neg
'1': pos
config_name: best2009
splits:
- name: train
num_bytes: 483129998
num_examples: 148995
- name: test
num_bytes: 10498726
num_examples: 2252
download_size: 13891260
dataset_size: 493628724
---
# Dataset Card for `best2009`
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://aiforthai.in.th/
- **Repository:** https://aiforthai.in.th/corpus.php
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** https://aiforthai.in.th/
### Dataset Summary
`best2009` is a Thai word-tokenization dataset from encyclopedia, novels, news and articles by [NECTEC](https://www.nectec.or.th/) (148,995/2,252 lines of train/test). It was created for [BEST 2010: Word Tokenization Competition](https://thailang.nectec.or.th/archive/indexa290.html?q=node/10). The test set answers are not provided publicly.
### Supported Tasks and Leaderboards
word tokenization
### Languages
Thai
## Dataset Structure
### Data Instances
```
{'char': ['?', 'ภ', 'ู', 'ม', 'ิ', 'ป', 'ั', 'ญ', 'ญ', 'า', 'ช', 'า', 'ว', 'บ', '้', 'า', 'น', '\n'], 'char_type': [4, 1, 10, 1, 10, 1, 4, 1, 1, 10, 1, 10, 1, 1, 9, 10, 1, 4], 'fname': 'encyclopedia_00031.txt', 'is_beginning': [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1]}
{'char': ['ภ', 'ู', 'ม', 'ิ', 'ป', 'ั', 'ญ', 'ญ', 'า', 'ช', 'า', 'ว', 'บ', '้', 'า', 'น', ' ', 'ห', 'ม', 'า', 'ย', 'ถ', 'ึ', 'ง', ' ', 'ค', 'ว', 'า', 'ม', 'ร', 'ู', '้', 'ข', 'อ', 'ง', 'ช', 'า', 'ว', 'บ', '้', 'า', 'น', ' ', 'ซ', 'ึ', '่', 'ง', 'เ', 'ร', 'ี', 'ย', 'น', 'ร', 'ู', '้', 'ม', 'า', 'จ', 'า', 'ก', 'พ', '่', 'อ', 'แ', 'ม', '่', ' ', 'ป', 'ู', '่', 'ย', '่', 'า', 'ต', 'า', 'ย', 'า', 'ย', ' ', 'ญ', 'า', 'ต', 'ิ', 'พ', 'ี', '่', 'น', '้', 'อ', 'ง', ' ', 'ห', 'ร', 'ื', 'อ', 'ผ', 'ู', '้', 'ม', 'ี', 'ค', 'ว', 'า', 'ม', 'ร', 'ู', '้', 'ใ', 'น', 'ห', 'ม', 'ู', '่', 'บ', '้', 'า', 'น', 'ใ', 'น', 'ท', '้', 'อ', 'ง', 'ถ', 'ิ', '่', 'น', 'ต', '่', 'า', 'ง', 'ๆ', '\n'], 'char_type': [1, 10, 1, 10, 1, 4, 1, 1, 10, 1, 10, 1, 1, 9, 10, 1, 5, 3, 1, 10, 1, 1, 10, 1, 5, 1, 1, 10, 1, 1, 10, 9, 1, 1, 1, 1, 10, 1, 1, 9, 10, 1, 5, 1, 10, 9, 1, 11, 1, 10, 1, 1, 1, 10, 9, 1, 10, 1, 10, 1, 1, 9, 1, 11, 1, 9, 5, 1, 10, 9, 1, 9, 10, 1, 10, 1, 10, 1, 5, 1, 10, 1, 10, 1, 10, 9, 1, 9, 1, 1, 5, 3, 1, 10, 1, 3, 10, 9, 1, 10, 1, 1, 10, 1, 1, 10, 9, 11, 1, 3, 1, 10, 9, 1, 9, 10, 1, 11, 1, 1, 9, 1, 1, 1, 10, 9, 1, 1, 9, 10, 1, 7, 4], 'fname': 'encyclopedia_00031.txt', 'is_beginning': [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]}
```
### Data Fields
- `fname`: file name; also marks if article is articles, news, encyclopedia or novels
- `char`: characters
- `char_type`: character types as adopted from []() by [deepcut](https://github.com/rkcosmos/deepcut)
- `is_beginning`: is beginning of word
### Data Splits
| | train | test |
|-------------------------|------------|---------|
| # lines | 148,995 | 2,252 |
| avg words per line | 39.05 | NA |
| total words | 5,818,521 | NA |
| avg characters per line | 140.39 | 202.79 |
| total characters | 20,918,132 | 456,684 |
| # lines articles | 16,990 | NA |
| # lines encyclopedia | 50,631 | NA |
| # lines novels | 50,140 | NA |
| # lines news | 31,234 | NA |
## Dataset Creation
### Curation Rationale
The dataset was created for [BEST 2010: Word Tokenization Competition](https://thailang.nectec.or.th/archive/indexa290.html?q=node/10) by [NECTEC](https://www.nectec.or.th/).
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
Respective authors of the articles, news, encyclopedia and novels
### Annotations
#### Annotation process
Detailed annotation guidelines can be found in `BEST_Guideline_Release1.pdf` as part of the uncompressed files. Word tokenization standard used was [InterBEST2009](http://hltshare.fbk.eu/IWSLT2015/InterBEST2009Guidelines-2.pdf)
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
All data are curated from public sources. No personal and sensitive information is expected to be included.
## Considerations for Using the Data
### Social Impact of Dataset
- word tokenization dataset from articles, news, encyclopedia and novels
### Discussion of Biases
- texts are relatively formal ones from articles, news, encyclopedia and novels.
- word tokenization standard used was [InterBEST2009](http://hltshare.fbk.eu/IWSLT2015/InterBEST2009Guidelines-2.pdf).
### Other Known Limitations
- some tags unrelated to word tokenization (`<NE>` and `<AB>`) are cleaned out.
- no word boundary provdied for the test set
## Additional Information
### Dataset Curators
[NECTEC](https://www.nectec.or.th/)
### Licensing Information
CC-BY-NC-SA 3.0
### Citation Information
Dataset:
```
@inproceedings{kosawat2009best,
title={BEST 2009: Thai word segmentation software contest},
author={Kosawat, Krit and Boriboon, Monthika and Chootrakool, Patcharika and Chotimongkol, Ananlada and Klaithin, Supon and Kongyoung, Sarawoot and Kriengket, Kanyanut and Phaholphinyo, Sitthaa and Purodakananda, Sumonmas and Thanakulwarapas, Tipraporn and others},
booktitle={2009 Eighth International Symposium on Natural Language Processing},
pages={83--88},
year={2009},
organization={IEEE}
}
@inproceedings{boriboon2009best,
title={Best corpus development and analysis},
author={Boriboon, Monthika and Kriengket, Kanyanut and Chootrakool, Patcharika and Phaholphinyo, Sitthaa and Purodakananda, Sumonmas and Thanakulwarapas, Tipraporn and Kosawat, Krit},
booktitle={2009 International Conference on Asian Language Processing},
pages={322--327},
year={2009},
organization={IEEE}
}
```
Character type features:
```
@inproceedings{haruechaiyasak2009tlex,
title={TLex: Thai lexeme analyser based on the conditional random fields},
author={Haruechaiyasak, Choochart and Kongyoung, Sarawoot},
booktitle={Proceedings of 8th International Symposium on Natural Language Processing},
year={2009}
}
```
### Contributions
Thanks to [@cstorm125](https://github.com/cstorm125) for adding this dataset. |