File size: 13,764 Bytes
fd15583
659fabb
 
 
 
 
 
 
 
 
 
 
 
 
e9f767a
659fabb
 
 
 
 
 
7ec181d
659fabb
 
 
 
 
 
 
e609eaa
e9f767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd15583
 
 
 
 
 
 
e609eaa
fd15583
 
 
 
e609eaa
fd15583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d216bde
fd15583
659fabb
 
 
fd15583
3a54beb
 
 
fd15583
d216bde
fd15583
 
 
 
e609eaa
fd15583
 
 
d216bde
fd15583
 
 
d216bde
fd15583
d216bde
fd15583
 
 
3a54beb
 
 
fd15583
 
 
 
 
 
 
 
 
 
 
 
 
3a54beb
 
 
fd15583
 
 
 
 
 
 
 
 
 
 
 
 
3a54beb
 
 
fd15583
 
 
 
 
 
 
 
 
 
 
 
 
3a54beb
 
 
fd15583
 
 
 
 
 
 
 
 
 
 
 
3a54beb
 
 
fd15583
 
 
 
 
 
 
 
 
 
d216bde
fd15583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e609eaa
fd15583
 
 
 
 
 
 
 
 
d216bde
fd15583
d216bde
fd15583
 
 
d216bde
fd15583
e609eaa
 
 
 
 
 
fd15583
 
d216bde
fd15583
e609eaa
 
 
 
 
 
fd15583
 
d216bde
fd15583
 
 
d216bde
fd15583
d216bde
fd15583
 
 
d216bde
fd15583
 
 
d216bde
fd15583
 
 
d216bde
fd15583
d216bde
fd15583
 
 
d216bde
fd15583
 
 
d216bde
fd15583
 
659fabb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd15583
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
---
annotations_creators:
- crowdsourced
language:
- az
- be
- en
- es
- fr
- gl
- he
- it
- pt
- ru
- tr
language_creators:
- expert-generated
license:
- cc-by-nc-nd-4.0
multilinguality:
- translation
pretty_name: TEDHrlr
size_categories:
- 1M<n<10M
source_datasets:
- extended|ted_talks_iwslt
task_categories:
- translation
task_ids: []
paperswithcode_id: null
dataset_info:
- config_name: az_to_en
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - az
        - en
  splits:
  - name: test
    num_bytes: 186540
    num_examples: 904
  - name: train
    num_bytes: 1226853
    num_examples: 5947
  - name: validation
    num_bytes: 122709
    num_examples: 672
  download_size: 131005909
  dataset_size: 1536102
- config_name: aztr_to_en
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - az_tr
        - en
  splits:
  - name: test
    num_bytes: 186540
    num_examples: 904
  - name: train
    num_bytes: 39834469
    num_examples: 188397
  - name: validation
    num_bytes: 122709
    num_examples: 672
  download_size: 131005909
  dataset_size: 40143718
- config_name: be_to_en
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - be
        - en
  splits:
  - name: test
    num_bytes: 186606
    num_examples: 665
  - name: train
    num_bytes: 1176899
    num_examples: 4510
  - name: validation
    num_bytes: 59328
    num_examples: 249
  download_size: 131005909
  dataset_size: 1422833
- config_name: beru_to_en
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - be_ru
        - en
  splits:
  - name: test
    num_bytes: 186606
    num_examples: 665
  - name: train
    num_bytes: 59953616
    num_examples: 212615
  - name: validation
    num_bytes: 59328
    num_examples: 249
  download_size: 131005909
  dataset_size: 60199550
- config_name: es_to_pt
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - es
        - pt
  splits:
  - name: test
    num_bytes: 343640
    num_examples: 1764
  - name: train
    num_bytes: 8611393
    num_examples: 44939
  - name: validation
    num_bytes: 181535
    num_examples: 1017
  download_size: 131005909
  dataset_size: 9136568
- config_name: fr_to_pt
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - fr
        - pt
  splits:
  - name: test
    num_bytes: 311650
    num_examples: 1495
  - name: train
    num_bytes: 8755387
    num_examples: 43874
  - name: validation
    num_bytes: 212317
    num_examples: 1132
  download_size: 131005909
  dataset_size: 9279354
- config_name: gl_to_en
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - gl
        - en
  splits:
  - name: test
    num_bytes: 193213
    num_examples: 1008
  - name: train
    num_bytes: 1961363
    num_examples: 10018
  - name: validation
    num_bytes: 137929
    num_examples: 683
  download_size: 131005909
  dataset_size: 2292505
- config_name: glpt_to_en
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - gl_pt
        - en
  splits:
  - name: test
    num_bytes: 193213
    num_examples: 1008
  - name: train
    num_bytes: 11734254
    num_examples: 61803
  - name: validation
    num_bytes: 137929
    num_examples: 683
  download_size: 131005909
  dataset_size: 12065396
- config_name: he_to_pt
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - he
        - pt
  splits:
  - name: test
    num_bytes: 361378
    num_examples: 1624
  - name: train
    num_bytes: 10627615
    num_examples: 48512
  - name: validation
    num_bytes: 230725
    num_examples: 1146
  download_size: 131005909
  dataset_size: 11219718
- config_name: it_to_pt
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - it
        - pt
  splits:
  - name: test
    num_bytes: 324726
    num_examples: 1670
  - name: train
    num_bytes: 8905825
    num_examples: 46260
  - name: validation
    num_bytes: 210375
    num_examples: 1163
  download_size: 131005909
  dataset_size: 9440926
- config_name: pt_to_en
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - pt
        - en
  splits:
  - name: test
    num_bytes: 347803
    num_examples: 1804
  - name: train
    num_bytes: 9772911
    num_examples: 51786
  - name: validation
    num_bytes: 207960
    num_examples: 1194
  download_size: 131005909
  dataset_size: 10328674
- config_name: ru_to_en
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - ru
        - en
  splits:
  - name: test
    num_bytes: 1459576
    num_examples: 5477
  - name: train
    num_bytes: 58778442
    num_examples: 208107
  - name: validation
    num_bytes: 1318357
    num_examples: 4806
  download_size: 131005909
  dataset_size: 61556375
- config_name: ru_to_pt
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - ru
        - pt
  splits:
  - name: test
    num_bytes: 409062
    num_examples: 1589
  - name: train
    num_bytes: 11882860
    num_examples: 47279
  - name: validation
    num_bytes: 276866
    num_examples: 1185
  download_size: 131005909
  dataset_size: 12568788
- config_name: tr_to_en
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - tr
        - en
  splits:
  - name: test
    num_bytes: 1026406
    num_examples: 5030
  - name: train
    num_bytes: 38607636
    num_examples: 182451
  - name: validation
    num_bytes: 832358
    num_examples: 4046
  download_size: 131005909
  dataset_size: 40466400
---

# Dataset Card for "ted_hrlr"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:**
- **Repository:** https://github.com/neulab/word-embeddings-for-nmt
- **Paper:** [When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?](https://aclanthology.org/N18-2084/)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 1.83 GB
- **Size of the generated dataset:** 281.66 MB
- **Total amount of disk used:** 2.12 GB

### Dataset Summary

Data sets derived from TED talk transcripts for comparing similar language pairs
where one is high resource and the other is low resource.

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Dataset Structure

### Data Instances

#### az_to_en

- **Size of downloaded dataset files:** 131.01 MB
- **Size of the generated dataset:** 1.53 MB
- **Total amount of disk used:** 132.54 MB

An example of 'train' looks as follows.
```
{
    "translation": {
        "az": "zəhmət olmasa , sizə xitab edən sözlər eşidəndə əlinizi qaldırın .",
        "en": "please raise your hand if something applies to you ."
    }
}
```

#### aztr_to_en

- **Size of downloaded dataset files:** 131.01 MB
- **Size of the generated dataset:** 40.14 MB
- **Total amount of disk used:** 171.15 MB

An example of 'train' looks as follows.
```
{
    "translation": {
        "az_tr": "zəhmət olmasa , sizə xitab edən sözlər eşidəndə əlinizi qaldırın .",
        "en": "please raise your hand if something applies to you ."
    }
}
```

#### be_to_en

- **Size of downloaded dataset files:** 131.01 MB
- **Size of the generated dataset:** 1.43 MB
- **Total amount of disk used:** 132.42 MB

An example of 'train' looks as follows.
```
{
    "translation": {
        "be": "zəhmət olmasa , sizə xitab edən sözlər eşidəndə əlinizi qaldırın .",
        "en": "please raise your hand if something applies to you ."
    }
}
```

#### beru_to_en

- **Size of downloaded dataset files:** 131.01 MB
- **Size of the generated dataset:** 60.20 MB
- **Total amount of disk used:** 191.21 MB

An example of 'validation' looks as follows.
```
This example was too long and was cropped:

{
    "translation": "{\"be_ru\": \"11 yaşımdaydım . səhərin birində , evimizdəki sevinc səslərinə oyandığım indiki kimi yadımdadır .\", \"en\": \"when i was..."
}
```

#### es_to_pt

- **Size of downloaded dataset files:** 131.01 MB
- **Size of the generated dataset:** 9.13 MB
- **Total amount of disk used:** 140.14 MB

An example of 'validation' looks as follows.
```
This example was too long and was cropped:

{
    "translation": "{\"es\": \"11 yaşımdaydım . səhərin birində , evimizdəki sevinc səslərinə oyandığım indiki kimi yadımdadır .\", \"pt\": \"when i was 11..."
}
```

### Data Fields

The data fields are the same among all splits.

#### az_to_en
- `translation`: a multilingual `string` variable, with possible languages including `az`, `en`.

#### aztr_to_en
- `translation`: a multilingual `string` variable, with possible languages including `az_tr`, `en`.

#### be_to_en
- `translation`: a multilingual `string` variable, with possible languages including `be`, `en`.

#### beru_to_en
- `translation`: a multilingual `string` variable, with possible languages including `be_ru`, `en`.

#### es_to_pt
- `translation`: a multilingual `string` variable, with possible languages including `es`, `pt`.

### Data Splits

|   name   |train |validation|test|
|----------|-----:|---------:|---:|
|az_to_en  |  5947|       672| 904|
|aztr_to_en|188397|       672| 904|
|be_to_en  |  4510|       249| 665|
|beru_to_en|212615|       249| 665|
|es_to_pt  | 44939|      1017|1764|

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information

```
@inproceedings{qi-etal-2018-pre,
    title = "When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?",
    author = "Qi, Ye  and
      Sachan, Devendra  and
      Felix, Matthieu  and
      Padmanabhan, Sarguna  and
      Neubig, Graham",
    booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
    month = jun,
    year = "2018",
    address = "New Orleans, Louisiana",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/N18-2084",
    doi = "10.18653/v1/N18-2084",
    pages = "529--535",
}
```

### Contributions

Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.