Datasets:
File size: 6,759 Bytes
76b4c62 4042416 af2f169 3d5bece 89f1f4e f110a12 1af0b73 4042416 4c0e521 1af0b73 833dc59 14ba410 fd026d2 32fc12a f99b6f6 4042416 af2f169 3d5bece 89f1f4e f110a12 4042416 4c0e521 1af0b73 833dc59 14ba410 fd026d2 32fc12a f99b6f6 d4dfbb6 76b4c62 d4dfbb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
---
license: apache-2.0
dataset_info:
- config_name: commonvoice
features:
- name: id
dtype: string
- name: text
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: words
sequence: string
- name: word_start
sequence: float64
- name: word_end
sequence: float64
- name: entity_start
sequence: int64
- name: entity_end
sequence: int64
- name: entity_label
sequence: string
splits:
- name: train
num_bytes: 43744079378.659
num_examples: 948733
- name: valid
num_bytes: 722372503.994
num_examples: 16353
download_size: 39798988113
dataset_size: 44466451882.653
- config_name: gigaspeech
features:
- name: id
dtype: string
- name: text
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: words
sequence: string
- name: word_start
sequence: float64
- name: word_end
sequence: float64
- name: entity_start
sequence: int64
- name: entity_end
sequence: int64
- name: entity_label
sequence: string
splits:
- name: train
num_bytes: 1032024261294.48
num_examples: 8282987
- name: valid
num_bytes: 1340974408.04
num_examples: 5715
download_size: 1148966064515
dataset_size: 1033365235702.52
- config_name: libris
features:
- name: id
dtype: string
- name: text
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: words
sequence: string
- name: word_start
sequence: float64
- name: word_end
sequence: float64
- name: entity_start
sequence: int64
- name: entity_end
sequence: int64
- name: entity_label
sequence: string
splits:
- name: train
num_bytes: 63849575890.896
num_examples: 281241
- name: valid
num_bytes: 793442600.643
num_examples: 5559
download_size: 61361142328
dataset_size: 64643018491.539
- config_name: mustc
features:
- name: id
dtype: string
- name: text
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: words
sequence: string
- name: word_start
sequence: float64
- name: word_end
sequence: float64
- name: entity_start
sequence: int64
- name: entity_end
sequence: int64
- name: entity_label
sequence: string
splits:
- name: train
num_bytes: 55552777413.1
num_examples: 248612
- name: valid
num_bytes: 313397447.704
num_examples: 1408
download_size: 52028374666
dataset_size: 55866174860.804
- config_name: tedlium
features:
- name: id
dtype: string
- name: text
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: words
sequence: string
- name: word_start
sequence: float64
- name: word_end
sequence: float64
- name: entity_start
sequence: int64
- name: entity_end
sequence: int64
- name: entity_label
sequence: string
splits:
- name: train
num_bytes: 56248950771.568
num_examples: 268216
- name: valid
num_bytes: 321930549.928
num_examples: 1456
download_size: 52557126451
dataset_size: 56570881321.496
- config_name: voxpopuli
features:
- name: id
dtype: string
- name: text
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: words
sequence: string
- name: word_start
sequence: float64
- name: word_end
sequence: float64
- name: entity_start
sequence: int64
- name: entity_end
sequence: int64
- name: entity_label
sequence: string
splits:
- name: train
num_bytes: 118516424284.524
num_examples: 182463
- name: valid
num_bytes: 1144543020.808
num_examples: 1842
download_size: 98669668241
dataset_size: 119660967305.332
configs:
- config_name: commonvoice
data_files:
- split: train
path: commonvoice/train-*
- split: valid
path: commonvoice/valid-*
- config_name: gigaspeech
data_files:
- split: train
path: gigaspeech/train-*
- split: valid
path: gigaspeech/valid-*
- config_name: libris
data_files:
- split: train
path: libris/train-*
- split: valid
path: libris/valid-*
- config_name: mustc
data_files:
- split: train
path: mustc/train-*
- split: valid
path: mustc/valid-*
- config_name: tedlium
data_files:
- split: train
path: tedlium/train-*
- split: valid
path: tedlium/valid-*
- config_name: voxpopuli
data_files:
- split: train
path: voxpopuli/train-*
- split: valid
path: voxpopuli/valid-*
language:
- en
pretty_name: Speech Recognition Alignment Dataset
size_categories:
- 10M<n<100M
---
# Speech Recognition Alignment Dataset
This dataset is a variation of several widely-used ASR datasets, encompassing Librispeech, MuST-C, TED-LIUM, VoxPopuli, Common Voice, and GigaSpeech. The difference is this dataset includes:
- Precise alignment between audio and text.
- Text that has been punctuated and made case-sensitive.
- Identification of named entities in the text.
# Usage
First, install the latest version of the 🤗 Datasets package:
```bash
pip install --upgrade pip
pip install --upgrade datasets[audio]
```
The dataset can be downloaded and pre-processed on disk using the [`load_dataset`](https://huggingface.co/docs/datasets/v2.14.5/en/package_reference/loading_methods#datasets.load_dataset)
function:
```python
from datasets import load_dataset
# Available dataset: 'libris','mustc','tedlium','voxpopuli','commonvoice','gigaspeech'
dataset = load_dataset("nguyenvulebinh/asr-alignment", "libris")
# take the first sample of the validation set
sample = dataset["train"][0]
```
It can also be streamed directly from the Hub using Datasets' [streaming mode](https://huggingface.co/blog/audio-datasets#streaming-mode-the-silver-bullet).
Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire
dataset to disk:
```python
from datasets import load_dataset
dataset = load_dataset("nguyenvulebinh/asr-alignment", "libris", streaming=True)
# take the first sample of the validation set
sample = next(iter(dataset["train"]))
```
## Citation
If you use this data, please consider citing the [ICASSP 2024 Paper: SYNTHETIC CONVERSATIONS IMPROVE MULTI-TALKER ASR]():
```
@INPROCEEDINGS{synthetic-multi-asr-nguyen,
author={Nguyen, Thai-Binh and Waibel, Alexander},
booktitle={ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
title={SYNTHETIC CONVERSATIONS IMPROVE MULTI-TALKER ASR},
year={2024},
volume={},
number={},
}
```
## License
This dataset is licensed in accordance with the terms of the original dataset. |