nielsr HF staff commited on
Commit
289d97a
1 Parent(s): 8c2c405

First commit

Browse files
Files changed (1) hide show
  1. XFUN.py +276 -0
XFUN.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Lint as: python3
2
+ import json
3
+ import logging
4
+ import os
5
+
6
+ import datasets
7
+
8
+ from transformers import AutoTokenizer
9
+
10
+ def load_image(image_path):
11
+ image = Image.open(image_path).convert("RGB")
12
+ w, h = image.size
13
+ # resize image to 224x224
14
+ image = image.resize((224, 224))
15
+ image = np.asarray(image)
16
+ image = image[:, :, ::-1] # flip color channels from RGB to BGR
17
+ image = image.transpose(2, 0, 1) # move channels to first dimension
18
+ return image, (w, h)
19
+
20
+
21
+ def normalize_bbox(bbox, size):
22
+ return [
23
+ int(1000 * bbox[0] / size[0]),
24
+ int(1000 * bbox[1] / size[1]),
25
+ int(1000 * bbox[2] / size[0]),
26
+ int(1000 * bbox[3] / size[1]),
27
+ ]
28
+
29
+
30
+ def simplify_bbox(bbox):
31
+ return [
32
+ min(bbox[0::2]),
33
+ min(bbox[1::2]),
34
+ max(bbox[2::2]),
35
+ max(bbox[3::2]),
36
+ ]
37
+
38
+
39
+ def merge_bbox(bbox_list):
40
+ x0, y0, x1, y1 = list(zip(*bbox_list))
41
+ return [min(x0), min(y0), max(x1), max(y1)]
42
+
43
+
44
+ _URL = "https://github.com/doc-analysis/XFUN/releases/download/v1.0/"
45
+
46
+ _LANG = ["zh", "de", "es", "fr", "en", "it", "ja", "pt"]
47
+ logger = logging.getLogger(__name__)
48
+
49
+
50
+ class XFUNConfig(datasets.BuilderConfig):
51
+ """BuilderConfig for XFUN."""
52
+
53
+ def __init__(self, lang, additional_langs=None, **kwargs):
54
+ """
55
+ Args:
56
+ lang: string, language for the input text
57
+ **kwargs: keyword arguments forwarded to super.
58
+ """
59
+ super(XFUNConfig, self).__init__(**kwargs)
60
+ self.lang = lang
61
+ self.additional_langs = additional_langs
62
+
63
+
64
+ class XFUN(datasets.GeneratorBasedBuilder):
65
+ """XFUN dataset."""
66
+
67
+ BUILDER_CONFIGS = [XFUNConfig(name=f"xfun.{lang}", lang=lang) for lang in _LANG]
68
+
69
+ tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
70
+
71
+ def _info(self):
72
+ return datasets.DatasetInfo(
73
+ features=datasets.Features(
74
+ {
75
+ "id": datasets.Value("string"),
76
+ "input_ids": datasets.Sequence(datasets.Value("int64")),
77
+ "bbox": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
78
+ "labels": datasets.Sequence(
79
+ datasets.ClassLabel(
80
+ names=["O", "B-QUESTION", "B-ANSWER", "B-HEADER", "I-ANSWER", "I-QUESTION", "I-HEADER"]
81
+ )
82
+ ),
83
+ "image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
84
+ "entities": datasets.Sequence(
85
+ {
86
+ "start": datasets.Value("int64"),
87
+ "end": datasets.Value("int64"),
88
+ "label": datasets.ClassLabel(names=["HEADER", "QUESTION", "ANSWER"]),
89
+ }
90
+ ),
91
+ "relations": datasets.Sequence(
92
+ {
93
+ "head": datasets.Value("int64"),
94
+ "tail": datasets.Value("int64"),
95
+ "start_index": datasets.Value("int64"),
96
+ "end_index": datasets.Value("int64"),
97
+ }
98
+ ),
99
+ }
100
+ ),
101
+ supervised_keys=None,
102
+ )
103
+
104
+ def _split_generators(self, dl_manager):
105
+ """Returns SplitGenerators."""
106
+ urls_to_download = {
107
+ "train": [f"{_URL}{self.config.lang}.train.json", f"{_URL}{self.config.lang}.train.zip"],
108
+ "val": [f"{_URL}{self.config.lang}.val.json", f"{_URL}{self.config.lang}.val.zip"],
109
+ # "test": [f"{_URL}{self.config.lang}.test.json", f"{_URL}{self.config.lang}.test.zip"],
110
+ }
111
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
112
+ train_files_for_many_langs = [downloaded_files["train"]]
113
+ val_files_for_many_langs = [downloaded_files["val"]]
114
+ # test_files_for_many_langs = [downloaded_files["test"]]
115
+ if self.config.additional_langs:
116
+ additional_langs = self.config.additional_langs.split("+")
117
+ if "all" in additional_langs:
118
+ additional_langs = [lang for lang in _LANG if lang != self.config.lang]
119
+ for lang in additional_langs:
120
+ urls_to_download = {"train": [f"{_URL}{lang}.train.json", f"{_URL}{lang}.train.zip"]}
121
+ additional_downloaded_files = dl_manager.download_and_extract(urls_to_download)
122
+ train_files_for_many_langs.append(additional_downloaded_files["train"])
123
+
124
+ logger.info(f"Training on {self.config.lang} with additional langs({self.config.additional_langs})")
125
+ logger.info(f"Evaluating on {self.config.lang}")
126
+ logger.info(f"Testing on {self.config.lang}")
127
+ return [
128
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_files_for_many_langs}),
129
+ datasets.SplitGenerator(
130
+ name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": val_files_for_many_langs}
131
+ ),
132
+ # datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": test_files_for_many_langs}),
133
+ ]
134
+
135
+ def _generate_examples(self, filepaths):
136
+ for filepath in filepaths:
137
+ logger.info("Generating examples from = %s", filepath)
138
+ with open(filepath[0], "r") as f:
139
+ data = json.load(f)
140
+
141
+ for doc in data["documents"]:
142
+ doc["img"]["fpath"] = os.path.join(filepath[1], doc["img"]["fname"])
143
+ image, size = load_image(doc["img"]["fpath"])
144
+ document = doc["document"]
145
+ tokenized_doc = {"input_ids": [], "bbox": [], "labels": []}
146
+ entities = []
147
+ relations = []
148
+ id2label = {}
149
+ entity_id_to_index_map = {}
150
+ empty_entity = set()
151
+ for line in document:
152
+ if len(line["text"]) == 0:
153
+ empty_entity.add(line["id"])
154
+ continue
155
+ id2label[line["id"]] = line["label"]
156
+ relations.extend([tuple(sorted(l)) for l in line["linking"]])
157
+ tokenized_inputs = self.tokenizer(
158
+ line["text"],
159
+ add_special_tokens=False,
160
+ return_offsets_mapping=True,
161
+ return_attention_mask=False,
162
+ )
163
+ text_length = 0
164
+ ocr_length = 0
165
+ bbox = []
166
+ for token_id, offset in zip(tokenized_inputs["input_ids"], tokenized_inputs["offset_mapping"]):
167
+ if token_id == 6:
168
+ bbox.append(None)
169
+ continue
170
+ text_length += offset[1] - offset[0]
171
+ tmp_box = []
172
+ while ocr_length < text_length:
173
+ ocr_word = line["words"].pop(0)
174
+ ocr_length += len(
175
+ self.tokenizer._tokenizer.normalizer.normalize_str(ocr_word["text"].strip())
176
+ )
177
+ tmp_box.append(simplify_bbox(ocr_word["box"]))
178
+ if len(tmp_box) == 0:
179
+ tmp_box = last_box
180
+ bbox.append(normalize_bbox(merge_bbox(tmp_box), size))
181
+ last_box = tmp_box # noqa
182
+ bbox = [
183
+ [bbox[i + 1][0], bbox[i + 1][1], bbox[i + 1][0], bbox[i + 1][1]] if b is None else b
184
+ for i, b in enumerate(bbox)
185
+ ]
186
+ if line["label"] == "other":
187
+ label = ["O"] * len(bbox)
188
+ else:
189
+ label = [f"I-{line['label'].upper()}"] * len(bbox)
190
+ label[0] = f"B-{line['label'].upper()}"
191
+ tokenized_inputs.update({"bbox": bbox, "labels": label})
192
+ if label[0] != "O":
193
+ entity_id_to_index_map[line["id"]] = len(entities)
194
+ entities.append(
195
+ {
196
+ "start": len(tokenized_doc["input_ids"]),
197
+ "end": len(tokenized_doc["input_ids"]) + len(tokenized_inputs["input_ids"]),
198
+ "label": line["label"].upper(),
199
+ }
200
+ )
201
+ for i in tokenized_doc:
202
+ tokenized_doc[i] = tokenized_doc[i] + tokenized_inputs[i]
203
+ relations = list(set(relations))
204
+ relations = [rel for rel in relations if rel[0] not in empty_entity and rel[1] not in empty_entity]
205
+ kvrelations = []
206
+ for rel in relations:
207
+ pair = [id2label[rel[0]], id2label[rel[1]]]
208
+ if pair == ["question", "answer"]:
209
+ kvrelations.append(
210
+ {"head": entity_id_to_index_map[rel[0]], "tail": entity_id_to_index_map[rel[1]]}
211
+ )
212
+ elif pair == ["answer", "question"]:
213
+ kvrelations.append(
214
+ {"head": entity_id_to_index_map[rel[1]], "tail": entity_id_to_index_map[rel[0]]}
215
+ )
216
+ else:
217
+ continue
218
+
219
+ def get_relation_span(rel):
220
+ bound = []
221
+ for entity_index in [rel["head"], rel["tail"]]:
222
+ bound.append(entities[entity_index]["start"])
223
+ bound.append(entities[entity_index]["end"])
224
+ return min(bound), max(bound)
225
+
226
+ relations = sorted(
227
+ [
228
+ {
229
+ "head": rel["head"],
230
+ "tail": rel["tail"],
231
+ "start_index": get_relation_span(rel)[0],
232
+ "end_index": get_relation_span(rel)[1],
233
+ }
234
+ for rel in kvrelations
235
+ ],
236
+ key=lambda x: x["head"],
237
+ )
238
+ chunk_size = 512
239
+ for chunk_id, index in enumerate(range(0, len(tokenized_doc["input_ids"]), chunk_size)):
240
+ item = {}
241
+ for k in tokenized_doc:
242
+ item[k] = tokenized_doc[k][index : index + chunk_size]
243
+ entities_in_this_span = []
244
+ global_to_local_map = {}
245
+ for entity_id, entity in enumerate(entities):
246
+ if (
247
+ index <= entity["start"] < index + chunk_size
248
+ and index <= entity["end"] < index + chunk_size
249
+ ):
250
+ entity["start"] = entity["start"] - index
251
+ entity["end"] = entity["end"] - index
252
+ global_to_local_map[entity_id] = len(entities_in_this_span)
253
+ entities_in_this_span.append(entity)
254
+ relations_in_this_span = []
255
+ for relation in relations:
256
+ if (
257
+ index <= relation["start_index"] < index + chunk_size
258
+ and index <= relation["end_index"] < index + chunk_size
259
+ ):
260
+ relations_in_this_span.append(
261
+ {
262
+ "head": global_to_local_map[relation["head"]],
263
+ "tail": global_to_local_map[relation["tail"]],
264
+ "start_index": relation["start_index"] - index,
265
+ "end_index": relation["end_index"] - index,
266
+ }
267
+ )
268
+ item.update(
269
+ {
270
+ "id": f"{doc['id']}_{chunk_id}",
271
+ "image": image,
272
+ "entities": entities_in_this_span,
273
+ "relations": relations_in_this_span,
274
+ }
275
+ )
276
+ yield f"{doc['id']}_{chunk_id}", item