# Lint as: python3 import json import logging import os import datasets from PIL import Image import numpy as np from transformers import AutoTokenizer def load_image(image_path, size): image = Image.open(image_path).convert("RGB") w, h = image.size if size is not None: # resize image image = image.resize((size, size)) image = np.asarray(image) image = image[:, :, ::-1] # flip color channels from RGB to BGR image = image.transpose(2, 0, 1) # move channels to first dimension return image, (w, h) def normalize_bbox(bbox, size): return [ int(1000 * bbox[0] / size[0]), int(1000 * bbox[1] / size[1]), int(1000 * bbox[2] / size[0]), int(1000 * bbox[3] / size[1]), ] def simplify_bbox(bbox): return [ min(bbox[0::2]), min(bbox[1::2]), max(bbox[2::2]), max(bbox[3::2]), ] def merge_bbox(bbox_list): x0, y0, x1, y1 = list(zip(*bbox_list)) return [min(x0), min(y0), max(x1), max(y1)] _URL = "https://github.com/doc-analysis/XFUN/releases/download/v1.0/" _LANG = ["zh", "de", "es", "fr", "en", "it", "ja", "pt"] logger = logging.getLogger(__name__) class XFUNConfig(datasets.BuilderConfig): """BuilderConfig for XFUN.""" def __init__(self, lang, additional_langs=None, **kwargs): """ Args: lang: string, language for the input text **kwargs: keyword arguments forwarded to super. """ super(XFUNConfig, self).__init__(**kwargs) self.lang = lang self.additional_langs = additional_langs class XFUN(datasets.GeneratorBasedBuilder): """XFUN dataset.""" BUILDER_CONFIGS = [XFUNConfig(name=f"xfun.{lang}", lang=lang) for lang in _LANG] tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base") def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "id": datasets.Value("string"), "input_ids": datasets.Sequence(datasets.Value("int64")), "bbox": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))), "labels": datasets.Sequence( datasets.ClassLabel( names=["O", "B-QUESTION", "B-ANSWER", "B-HEADER", "I-ANSWER", "I-QUESTION", "I-HEADER"] ) ), "image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"), "entities": datasets.Sequence( { "start": datasets.Value("int64"), "end": datasets.Value("int64"), "label": datasets.ClassLabel(names=["HEADER", "QUESTION", "ANSWER"]), } ), "relations": datasets.Sequence( { "head": datasets.Value("int64"), "tail": datasets.Value("int64"), "start_index": datasets.Value("int64"), "end_index": datasets.Value("int64"), } ), } ), supervised_keys=None, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": [f"{_URL}{self.config.lang}.train.json", f"{_URL}{self.config.lang}.train.zip"], "val": [f"{_URL}{self.config.lang}.val.json", f"{_URL}{self.config.lang}.val.zip"], # "test": [f"{_URL}{self.config.lang}.test.json", f"{_URL}{self.config.lang}.test.zip"], } downloaded_files = dl_manager.download_and_extract(urls_to_download) train_files_for_many_langs = [downloaded_files["train"]] val_files_for_many_langs = [downloaded_files["val"]] # test_files_for_many_langs = [downloaded_files["test"]] if self.config.additional_langs: additional_langs = self.config.additional_langs.split("+") if "all" in additional_langs: additional_langs = [lang for lang in _LANG if lang != self.config.lang] for lang in additional_langs: urls_to_download = {"train": [f"{_URL}{lang}.train.json", f"{_URL}{lang}.train.zip"]} additional_downloaded_files = dl_manager.download_and_extract(urls_to_download) train_files_for_many_langs.append(additional_downloaded_files["train"]) logger.info(f"Training on {self.config.lang} with additional langs({self.config.additional_langs})") logger.info(f"Evaluating on {self.config.lang}") logger.info(f"Testing on {self.config.lang}") return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_files_for_many_langs}), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": val_files_for_many_langs} ), # datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": test_files_for_many_langs}), ] def _generate_examples(self, filepaths): for filepath in filepaths: logger.info("Generating examples from = %s", filepath) with open(filepath[0], "r", encoding="utf-8") as f: data = json.load(f) for doc in data["documents"]: doc["img"]["fpath"] = os.path.join(filepath[1], doc["img"]["fname"]) image, size = load_image(doc["img"]["fpath"], size=224) original_image, _ = load_image(doc["img"]["fpath"]) document = doc["document"] tokenized_doc = {"input_ids": [], "bbox": [], "labels": []} entities = [] relations = [] id2label = {} entity_id_to_index_map = {} empty_entity = set() for line in document: if len(line["text"]) == 0: empty_entity.add(line["id"]) continue id2label[line["id"]] = line["label"] relations.extend([tuple(sorted(l)) for l in line["linking"]]) tokenized_inputs = self.tokenizer( line["text"], add_special_tokens=False, return_offsets_mapping=True, return_attention_mask=False, ) text_length = 0 ocr_length = 0 bbox = [] for token_id, offset in zip(tokenized_inputs["input_ids"], tokenized_inputs["offset_mapping"]): if token_id == 6: bbox.append(None) continue text_length += offset[1] - offset[0] tmp_box = [] while ocr_length < text_length: ocr_word = line["words"].pop(0) ocr_length += len( self.tokenizer._tokenizer.normalizer.normalize_str(ocr_word["text"].strip()) ) tmp_box.append(simplify_bbox(ocr_word["box"])) if len(tmp_box) == 0: tmp_box = last_box bbox.append(normalize_bbox(merge_bbox(tmp_box), size)) last_box = tmp_box # noqa bbox = [ [bbox[i + 1][0], bbox[i + 1][1], bbox[i + 1][0], bbox[i + 1][1]] if b is None else b for i, b in enumerate(bbox) ] if line["label"] == "other": label = ["O"] * len(bbox) else: label = [f"I-{line['label'].upper()}"] * len(bbox) label[0] = f"B-{line['label'].upper()}" tokenized_inputs.update({"bbox": bbox, "labels": label}) if label[0] != "O": entity_id_to_index_map[line["id"]] = len(entities) entities.append( { "start": len(tokenized_doc["input_ids"]), "end": len(tokenized_doc["input_ids"]) + len(tokenized_inputs["input_ids"]), "label": line["label"].upper(), } ) for i in tokenized_doc: tokenized_doc[i] = tokenized_doc[i] + tokenized_inputs[i] relations = list(set(relations)) relations = [rel for rel in relations if rel[0] not in empty_entity and rel[1] not in empty_entity] kvrelations = [] for rel in relations: pair = [id2label[rel[0]], id2label[rel[1]]] if pair == ["question", "answer"]: kvrelations.append( {"head": entity_id_to_index_map[rel[0]], "tail": entity_id_to_index_map[rel[1]]} ) elif pair == ["answer", "question"]: kvrelations.append( {"head": entity_id_to_index_map[rel[1]], "tail": entity_id_to_index_map[rel[0]]} ) else: continue def get_relation_span(rel): bound = [] for entity_index in [rel["head"], rel["tail"]]: bound.append(entities[entity_index]["start"]) bound.append(entities[entity_index]["end"]) return min(bound), max(bound) relations = sorted( [ { "head": rel["head"], "tail": rel["tail"], "start_index": get_relation_span(rel)[0], "end_index": get_relation_span(rel)[1], } for rel in kvrelations ], key=lambda x: x["head"], ) chunk_size = 512 for chunk_id, index in enumerate(range(0, len(tokenized_doc["input_ids"]), chunk_size)): item = {} for k in tokenized_doc: item[k] = tokenized_doc[k][index : index + chunk_size] entities_in_this_span = [] global_to_local_map = {} for entity_id, entity in enumerate(entities): if ( index <= entity["start"] < index + chunk_size and index <= entity["end"] < index + chunk_size ): entity["start"] = entity["start"] - index entity["end"] = entity["end"] - index global_to_local_map[entity_id] = len(entities_in_this_span) entities_in_this_span.append(entity) relations_in_this_span = [] for relation in relations: if ( index <= relation["start_index"] < index + chunk_size and index <= relation["end_index"] < index + chunk_size ): relations_in_this_span.append( { "head": global_to_local_map[relation["head"]], "tail": global_to_local_map[relation["tail"]], "start_index": relation["start_index"] - index, "end_index": relation["end_index"] - index, } ) item.update( { "id": f"{doc['id']}_{chunk_id}", "image": image, "original_image": original_image, "entities": entities_in_this_span, "relations": relations_in_this_span, } ) yield f"{doc['id']}_{chunk_id}", item