import csv import datasets from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split import tarfile _PROMPTS_URLS = { "train": "segmented_audios.csv", "validation": "validation.csv", } _ARCHIVES = { "train": "nurc-sp_corpus_minimo.tar.gz", } class NurcSPConfig(BuilderConfig): def __init__(self, prompts_type="original", **kwargs): super().__init__(**kwargs) self.prompts_type = prompts_type class NurcSPDataset(GeneratorBasedBuilder): def _info(self): return DatasetInfo( features=datasets.Features( { "path": datasets.Value("string"), "name": datasets.Value("string"), "speaker": datasets.Value("string"), "start_time": datasets.Value("string"), "end_time": datasets.Value("string"), "normalized_text": datasets.Value("string"), "text": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000), } ) ) def _split_generators(self, dl_manager): prompts_path = dl_manager.download(_PROMPTS_URLS) archive = dl_manager.download(_ARCHIVES) # Define the path_to_clips variable, pointing to the directory where the audio clips are stored path_to_clips = "segmented_audios" # Update this with the actual path return [ SplitGenerator( name=Split.TRAIN, # Single split gen_kwargs={ "prompts_path": prompts_path["train"], "path_to_clips": path_to_clips, "audio_files": dl_manager.iter_archive(archive["train"]), } ), SplitGenerator( name=Split.VALIDATION, # Single split gen_kwargs={ "prompts_path": prompts_path["validation"], "path_to_clips": path_to_clips, "audio_files": dl_manager.iter_archive(archive["train"]), } ), ] def _generate_examples(self, prompts_path, path_to_clips, audio_files): examples = {} with open(prompts_path, "r") as f: csv_reader = csv.DictReader(f) for row in csv_reader: path = row['path'] name = row['name'] speaker = row['speaker'] start_time = row['start_time'] end_time = row['end_time'] normalized_text = row['normalized_text'] text = row['text'] examples[path] = { "path": path, "name": name, "speaker": speaker, "start_time": start_time, "end_time": end_time, "normalized_text": normalized_text, "text": text, } inside_clips_dir = False id_ = 0 for path, f in audio_files: if path.startswith(path_to_clips): inside_clips_dir = True if path in examples: audio = {"path": path, "bytes": f.read()} yield id_, {**examples[path], "audio": audio} id_ += 1 elif inside_clips_dir: break