|
from datasets import load_dataset, Features, Value, Sequence |
|
from dataclasses import dataclass, field |
|
import logging |
|
from transformers import HfArgumentParser |
|
from tqdm import tqdm |
|
from typing import Dict, List |
|
import json |
|
import numpy as np |
|
from itertools import islice |
|
|
|
logger = logging.getLogger() |
|
logger.setLevel(logging.INFO) |
|
console_handler = logging.StreamHandler() |
|
console_handler.setFormatter( |
|
logging.Formatter("[%(asctime)s %(levelname)s] %(message)s") |
|
) |
|
logger.handlers = [console_handler] |
|
|
|
|
|
@dataclass |
|
class ConversionAgruments: |
|
hardneg: str = field(metadata={"help": "Path to msmarco-hard-negatives.jsonl file"}) |
|
out: str = field(metadata={"help": "Output path"}) |
|
|
|
|
|
@dataclass |
|
class QRel: |
|
doc: int |
|
score: int |
|
|
|
|
|
def load_msmarco(path: str, split) -> Dict[int, str]: |
|
dataset = load_dataset(path, split, split=split) |
|
cache: Dict[int, str] = {} |
|
for row in tqdm(dataset, desc=f"loading {path} split={split}"): |
|
index = int(row["_id"]) |
|
cache[index] = row["text"] |
|
return cache |
|
|
|
|
|
def load_qrel(path: str, split: str) -> Dict[int, List[QRel]]: |
|
dataset = load_dataset(path, split=split) |
|
print(dataset.features) |
|
cache: Dict[int, List[QRel]] = {} |
|
for row in tqdm(dataset, desc=f"loading {path} split={split}"): |
|
qid = int(row["query-id"]) |
|
qrel = QRel(int(row["corpus-id"]), int(row["score"])) |
|
if qid in cache: |
|
cache[qid].append(qrel) |
|
else: |
|
cache[qid] = [qrel] |
|
return cache |
|
|
|
|
|
def process_raw( |
|
qrels: Dict[int, List[QRel]], |
|
queries: Dict[int, str], |
|
corpus: Dict[int, str], |
|
hardneg: Dict[int, List[int]], |
|
) -> List[Dict]: |
|
result = [] |
|
for query, rels in tqdm(qrels.items(), desc="processing split"): |
|
pos = [ |
|
{"doc": corpus[rel.doc], "score": rel.score} |
|
for rel in rels |
|
if rel.doc in corpus and rel.score > 0 |
|
] |
|
neg = [ |
|
{"doc": corpus[doc], "score": 0.0} |
|
for doc in hardneg.get(query, []) |
|
if doc in corpus |
|
] |
|
group = {"query": queries[query], "pos": pos, "neg": neg} |
|
result.append(group) |
|
return result |
|
|
|
|
|
def load_hardneg(path: str): |
|
result: Dict[int, List[int]] = {} |
|
with open(path, "r") as jsonfile: |
|
for line in tqdm(jsonfile, total=808731, desc="loading hard negatives"): |
|
row = json.loads(line) |
|
scores: Dict[int, float] = {} |
|
for method, docs in row["neg"].items(): |
|
for index, doc in enumerate(docs): |
|
prev = scores.get(int(doc), 0.0) |
|
scores[int(doc)] = prev + 1.0 / (60 + index) |
|
topneg = [ |
|
doc |
|
for doc, score in sorted( |
|
scores.items(), key=lambda x: x[1], reverse=True |
|
) |
|
] |
|
result[int(row["qid"])] = topneg[:32] |
|
return result |
|
|
|
|
|
def main(): |
|
parser = HfArgumentParser((ConversionAgruments)) |
|
(args,) = parser.parse_args_into_dataclasses() |
|
print(f"Args: {args}") |
|
hardneg = load_hardneg(args.hardneg) |
|
qrels = { |
|
"train": load_qrel("BeIR/msmarco-qrels", split="train"), |
|
"dev": load_qrel("BeIR/msmarco-qrels", split="validation"), |
|
} |
|
queries = load_msmarco("BeIR/msmarco", split="queries") |
|
corpus = load_msmarco("BeIR/msmarco", split="corpus") |
|
print("processing done") |
|
for split, data in qrels.items(): |
|
dataset = process_raw(data, queries, corpus, hardneg) |
|
with open(f"{args.out}/{split}.jsonl", "w") as out: |
|
for item in dataset: |
|
json.dump(item, out) |
|
out.write("\n") |
|
print("done") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|