|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import pandas as pd |
|
import json |
|
import datasets |
|
import json |
|
from huggingface_hub import hf_hub_url |
|
|
|
_INPUT_CSV = "dollar_street_test.csv" |
|
_INPUT_IMAGES = "dollarstreet_test_images" |
|
_REPO_ID = "nlphuji/dollar_street_test" |
|
_JSON_COLS = ['topics', 'imagenet_synonyms', 'imagenet_sysnet_id'] |
|
|
|
class Dataset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="TEST", version=VERSION, description="test"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"id": datasets.Value('string'), |
|
"country.id": datasets.Value('string'), |
|
"country.name": datasets.Value('string'), |
|
"region.id": datasets.Value('string'), |
|
"type": datasets.Value('string'), |
|
"imageRelPath": datasets.Value('string'), |
|
"topics": [datasets.Value('string')], |
|
"place": datasets.Value('string'), |
|
"income": datasets.Value('string'), |
|
"imagenet_synonyms": [datasets.Value('string')], |
|
"imagenet_sysnet_id": [datasets.Value('string')], |
|
"image_name": datasets.Value('string') |
|
} |
|
), |
|
task_templates=[], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
repo_id = _REPO_ID |
|
data_dir = dl_manager.download_and_extract({ |
|
"examples_csv": hf_hub_url(repo_id=repo_id, repo_type='dataset', filename=_INPUT_CSV), |
|
"images_dir": hf_hub_url(repo_id=repo_id, repo_type='dataset', filename=f"{_INPUT_IMAGES}.zip") |
|
}) |
|
|
|
return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=data_dir)] |
|
|
|
|
|
def _generate_examples(self, examples_csv, images_dir): |
|
"""Yields examples.""" |
|
df = pd.read_csv(examples_csv) |
|
for c in _JSON_COLS: |
|
df[c] = df[c].apply(lambda x: json.loads(x.replace("'",'"'))) |
|
|
|
for r_idx, r in df.iterrows(): |
|
r_dict = r.to_dict() |
|
image_path = os.path.join(images_dir, _INPUT_IMAGES, r_dict['image_name']) |
|
r_dict['image'] = image_path |
|
yield r_idx, r_dict |