|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import pandas as pd |
|
import datasets |
|
import json |
|
from huggingface_hub import hf_hub_url |
|
|
|
_INPUT_CSV = "fairface_labeled_val.csv" |
|
_INPUT_IMAGES_025 = "fairface_val_images" |
|
_INPUT_IMAGE_125 = 'fairface_val_images_125' |
|
_REPO_ID = "nlphuji/fairface_val" |
|
|
|
class Dataset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="padding_025", version=VERSION, description="Padding=0.25"), |
|
datasets.BuilderConfig(name="padding_125", version=VERSION, description="Padding=0.25"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"file": datasets.Value('string'), |
|
"age": datasets.Value('string'), |
|
"gender": datasets.Value('string'), |
|
"race": datasets.Value('string'), |
|
"service_test": datasets.Value('string'), |
|
"image_name": datasets.Value('string'), |
|
} |
|
), |
|
task_templates=[], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
repo_id = _REPO_ID |
|
data_dir_025 = dl_manager.download_and_extract({ |
|
"examples_csv": hf_hub_url(repo_id=repo_id, repo_type='dataset', filename=_INPUT_CSV), |
|
"images_dir": hf_hub_url(repo_id=repo_id, repo_type='dataset', filename=f"{_INPUT_IMAGES_025}.zip") |
|
}) |
|
data_dir_125 = dl_manager.download_and_extract({ |
|
"examples_csv": hf_hub_url(repo_id=repo_id, repo_type='dataset', filename=_INPUT_CSV), |
|
"images_dir": hf_hub_url(repo_id=repo_id, repo_type='dataset', filename=f"{_INPUT_IMAGES_125}.zip") |
|
}) |
|
|
|
splits = [datasets.SplitGenerator(name=datasets.Split.padding_025, gen_kwargs=data_dir_025), |
|
datasets.SplitGenerator(name=datasets.Split.padding_125, gen_kwargs=data_dir_125)] |
|
|
|
return splits |
|
|
|
|
|
def _generate_examples(self, examples_csv, images_dir): |
|
"""Yields examples.""" |
|
df = pd.read_csv(examples_csv) |
|
|
|
for r_idx, r in df.iterrows(): |
|
r_dict = r.to_dict() |
|
image_path = os.path.join(images_dir, _INPUT_IMAGES, r_dict['image_name']) |
|
r_dict['image'] = image_path |
|
yield r_idx, r_dict |