# coding=utf-8 # Copyright 2023 Nonwestlit codebase authors the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Ottoman Literary Dataset from late 19th century up to early 20th century.""" import json import warnings from typing import List import datasets from transformers import PreTrainedTokenizerBase logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """\ First level categorization of Ottoman articles. """ _URLS = { "train": "train.json", "val": "val.json", "test": "test.json", } _CLASS_NAMES = ["literary_text", "cultural_discourse", "other"] class NonwestlitFirstLevelConfig(datasets.BuilderConfig): """BuilderConfig for Dataset.""" def __init__( self, tokenizer: PreTrainedTokenizerBase = None, max_sequence_length: int = None, **kwargs ): """BuilderConfig for Dataset. Args: **kwargs: keyword arguments forwarded to super. """ super(NonwestlitFirstLevelConfig, self).__init__(**kwargs) self.tokenizer = tokenizer self.max_sequence_length = max_sequence_length @property def features(self): return { "labels": datasets.ClassLabel(names=_CLASS_NAMES), "input_ids": datasets.Value("string"), "title": datasets.Value("string"), "iid": datasets.Value("uint32"), "chunk_id": datasets.Value("uint32"), } class NonwestlitFirstLevelDataset(datasets.GeneratorBasedBuilder): """Nonwestlit Ottoman Classification Dataset""" BUILDER_CONFIGS = [ NonwestlitFirstLevelConfig( name="seq_cls", version=datasets.Version("1.0.0", ""), description=_DESCRIPTION, ) ] BUILDER_CONFIG_CLASS = NonwestlitFirstLevelConfig __current_id = 1 __current_chunk_id = 1 @property def __next_id(self): cid = self.__current_id self.__current_id += 1 return cid @property def __next_chunk_id(self): cid = self.__current_chunk_id self.__current_chunk_id += 1 return cid def __reset_chunk_id(self): self.__current_chunk_id = 1 def _info(self): if self.config.tokenizer is None: raise RuntimeError( "For HF Datasets and for chunking to be carried out, 'tokenizer' must be given." ) if "llama" in self.config.tokenizer.name_or_path: warnings.warn( "It is suggested to pass 'max_sequence_length' argument for Llama-2 model family. There " "might be errors for the data processing parts as `model_max_len` attributes are set to" "MAX_INT64 (?)." ) return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(self.config.features), ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir["train"]} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_dir["val"]} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir["test"]} ), ] def prepare_articles(self, article: str) -> List[str]: tokenizer = self.config.tokenizer model_inputs = tokenizer( article, truncation=True, padding=True, max_length=self.config.max_sequence_length, return_overflowing_tokens=True, ) return tokenizer.batch_decode(model_inputs["input_ids"], skip_special_tokens=True) def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: dataset = json.load(f) chunk_id = 0 for instance in dataset: iid = instance.get("id", self.__next_id) label = instance.get("label") article = self.prepare_articles(instance["article"]) self.__reset_chunk_id() for chunk in article: chunk_inputs = { "iid": iid, "chunk_id": self.__next_chunk_id, "title": instance["title"], "input_ids": chunk, "labels": int(label) - 1, } yield chunk_id, chunk_inputs chunk_id += 1