"""Russian Literary Dataset from late 19th century up to early 20th century.""" import json import os import warnings from typing import Dict, List, Tuple import datasets import numpy as np from transformers import PreTrainedTokenizerBase _DESCRIPTION = """Third level categorization of Russian articles.""" _HOMEPAGE = "" _LICENSE = "" _NAMES = [ "identity_type", "literature_movement", "modernization_subject", "philosophy_subject", "subject_genre" ] # Label information as `(num_labels, is_multi_label)` tuples _LABELS: Dict[str, Tuple[int, bool]] = { "identity_type": (2, True), "literature_movement": (3, True), "modernization_subject": (4, True), "philosophy_subject": (5, True), "subject_genre": (3, True), } def generate_urls(name: str) -> Dict[str, str]: return { "train": os.path.join(name, "train.json"), "val": os.path.join(name, "val.json"), "test": os.path.join(name, "test.json"), } class NonwestlitThirdLevelConfig(datasets.BuilderConfig): """BuilderConfig for Dataset.""" def __init__( self, tokenizer: PreTrainedTokenizerBase = None, max_sequence_length: int = None, **kwargs ): """BuilderConfig for Dataset. Args: **kwargs: keyword arguments forwarded to super. """ super(NonwestlitThirdLevelConfig, self).__init__(**kwargs) self.tokenizer = tokenizer self.max_sequence_length = max_sequence_length @property def features(self): if self.name == "literary_text_type": labels = datasets.Value("uint8") else: labels = datasets.Sequence(datasets.Value("uint8")) return { "labels": labels, "input_ids": datasets.Value("string"), "title": datasets.Value("string"), "iid": datasets.Value("uint32"), "chunk_id": datasets.Value("uint32"), } class NonwestlitThirdLevelDataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.0.1") BUILDER_CONFIGS = [ NonwestlitThirdLevelConfig(name=name, version=version, description=name) for name, version in zip(_NAMES, [VERSION] * len(_NAMES)) ] BUILDER_CONFIG_CLASS = NonwestlitThirdLevelConfig __current_id = 1 __current_chunk_id = 1 @property def __next_id(self): cid = self.__current_id self.__current_id += 1 return cid @property def __next_chunk_id(self): cid = self.__current_chunk_id self.__current_chunk_id += 1 return cid @property def label_info(self) -> Tuple[int, bool]: return _LABELS[self.config.name] def __reset_chunk_id(self): self.__current_chunk_id = 1 def _info(self): if self.config.tokenizer is None: raise RuntimeError( "For HF Datasets and for chunking to be carried out, 'tokenizer' must be given." ) if "llama" in self.config.tokenizer.name_or_path: warnings.warn( "It is suggested to pass 'max_sequence_length' argument for Llama-2 model family. There " "might be errors for the data processing parts as `model_max_len` attributes are set to" "MAX_INT64 (?)." ) return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(self.config.features), ) def _split_generators(self, dl_manager): urls = generate_urls(self.config.name) data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir["train"]} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_dir["val"]} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir["test"]} ), ] def prepare_articles(self, article: str) -> List[str]: tokenizer = self.config.tokenizer model_inputs = tokenizer( article, truncation=True, padding=True, max_length=self.config.max_sequence_length, return_overflowing_tokens=True, ) return tokenizer.batch_decode(model_inputs["input_ids"], skip_special_tokens=True) def _to_one_hot(self, labels: List[int], num_labels: int) -> List[int]: x = np.zeros(num_labels, dtype=np.float16) x[labels] = 1.0 return x.tolist() # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath: str): with open(filepath, encoding="utf-8") as f: dataset = json.load(f) num_labels, multi_label = self.label_info chunk_id = 0 for instance in dataset: iid = instance.get("id", self.__next_id) label = instance.get("label") if label is None: if not multi_label: continue else: label = self._to_one_hot(labels=[], num_labels=num_labels) elif isinstance(label, int): label = int(label) - 1 elif isinstance(label, str): if multi_label: label = [int(l) - 1 for l in label.split(",")] label = self._to_one_hot(label, num_labels) else: label = int(label) - 1 article = self.prepare_articles(instance["article"]) self.__reset_chunk_id() for chunk in article: chunk_inputs = { "iid": iid, "chunk_id": self.__next_chunk_id, "title": instance["title"], "input_ids": chunk, "labels": label, } yield chunk_id, chunk_inputs chunk_id += 1