Datasets:

zip
stringlengths
19
109
filename
stringlengths
4
185
contents
stringlengths
0
30.1M
type_annotations
sequencelengths
0
1.97k
type_annotation_starts
sequencelengths
0
1.97k
type_annotation_ends
sequencelengths
0
1.97k
archives/007MrNiko_Stepper.zip
about/urls.py
from django.urls import path from about import views #creating of section "about" app_name = 'about' urlpatterns = [ path('about_project', views.index, name='video'), ]
[]
[]
[]
archives/007MrNiko_Stepper.zip
about/views.py
from django.shortcuts import render, redirect from django.http import HttpResponse #connecting of html file (section "about") def index(request): return render(request, 'index_about.html')
[]
[]
[]
archives/007MrNiko_Stepper.zip
accounts/__init__.py
[]
[]
[]
archives/007MrNiko_Stepper.zip
accounts/admin.py
from django.contrib import admin # Register your models here.
[]
[]
[]
archives/007MrNiko_Stepper.zip
accounts/forms.py
from django import forms from django.contrib.auth.models import User def widget_attrs(placeholder): return {'class': 'u-full-width', 'placeholder': placeholder} def form_kwargs(widget, label='', max_length=64): return {'widget': widget, 'label': label, 'max_length': max_length} #login form class LoginForm(forms.Form): username = forms.CharField( **form_kwargs(widget=forms.TextInput(attrs=widget_attrs('Username'))) ) password = forms.CharField( **form_kwargs( widget=forms.PasswordInput(attrs=widget_attrs('Password')) ) ) #cleaning of form def clean(self): # Don't check if we already have errors. if self.errors: return self.cleaned_data username = self.cleaned_data.get('username') password = self.cleaned_data.get('password') user = User.objects.filter(username=username).first() if not user or not user.check_password(password): raise forms.ValidationError('Incorrect username and/or password.') return self.cleaned_data #registration class RegistrationForm(forms.Form): username = forms.CharField( **form_kwargs(widget=forms.TextInput(attrs=widget_attrs('Username'))) ) email = forms.EmailField( **form_kwargs(widget=forms.TextInput(attrs=widget_attrs('Email'))) ) password = forms.CharField( **form_kwargs( widget=forms.PasswordInput(attrs=widget_attrs('Password')) ) ) password_confirmation = forms.CharField( **form_kwargs( widget=forms.PasswordInput( attrs=widget_attrs('Password confirmation') ) ) ) def clean(self): password = self.cleaned_data.get('password') password_confirmation = self.cleaned_data.get('password_confirmation') if password and password != password_confirmation: raise forms.ValidationError("Passwords don't match.") return self.cleaned_data
[]
[]
[]
archives/007MrNiko_Stepper.zip
accounts/migrations/__init__.py
[]
[]
[]
archives/007MrNiko_Stepper.zip
accounts/models.py
from django.db import models # Create your models here.
[]
[]
[]
archives/007MrNiko_Stepper.zip
accounts/tests.py
from django.test import TestCase from django.urls import reverse from django.contrib.auth.models import User from django import forms from accounts.forms import RegistrationForm, LoginForm class AccountsTests(TestCase): def setUp(self): self.register_data = { 'email': 'new@user.com', 'username': 'new_user', 'password': 'test', 'password_confirmation': 'test' } User.objects.create_user('test', 'test@example.com', 'test') def tearDown(self): User.objects.get(username='test').delete() def test_get_register(self): response = self.client.get(reverse('auth:register')) self.assertTemplateUsed(response, 'accounts/register.html') self.assertIsInstance(response.context['form'], RegistrationForm) def test_get_login(self): response = self.client.get(reverse('auth:login')) self.assertTemplateUsed(response, 'accounts/login.html') self.assertIsInstance(response.context['form'], LoginForm) def test_register(self): response = self.client.post( reverse('auth:register'), data=self.register_data ) self.assertRedirects(response, '/auth/login/') # new user was created self.assertIsNotNone(User.objects.get(username='new_user')) def test_login(self): # no user is logged in self.assertFalse('_auth_user_id' in self.client.session) login_data = {'username': 'test', 'password': 'test'} response = self.client.post(reverse('auth:login'), data=login_data) self.assertRedirects(response, '/') # user is logged in self.assertEqual(self.client.session['_auth_user_id'], '1') # check if error messages are part of the response def test_faulty_login(self): # change username for invalid post login_data = {'username': 65 * 'X', 'password': 'test'} response = self.client.post(reverse('auth:login'), data=login_data) error_message = 'Ensure this value has at most 64 characters' self.assertContains(response, error_message, status_code=200) def test_login_with_non_existent_user(self): # change username for invalid post login_data = {'username': 'notauser', 'password': 'stillapassowrd'} response = self.client.post(reverse('auth:login'), data=login_data) error_message = 'Incorrect username and/or password.' self.assertContains(response, error_message, status_code=200) def test_login_with_wrong_password(self): # change username for invalid post login_data = {'username': 'test', 'password': 'wrongpassword'} response = self.client.post(reverse('auth:login'), data=login_data) error_message = 'Incorrect username and/or password.' self.assertContains(response, error_message, status_code=200) def test_faulty_register(self): # change username for invalid post self.register_data['username'] = 65 * 'X' response = self.client.post( reverse('auth:register'), data=self.register_data ) error_message = 'Ensure this value has at most 64 characters' self.assertContains(response, error_message, status_code=200) def test_logout(self): response = self.client.get(reverse('auth:logout')) self.assertRedirects(response, '/') # no user logged in anymore self.assertFalse('_auth_user_id' in self.client.session) class LoginFormTests(TestCase): # valid test case is covered by AccountsTests (because we need a user) def setUp(self): self.too_long_password = {'username': 'test', 'password': 65 * 'X'} self.too_long_username = {'username': 65 * 'X', 'password': 'test'} def test_too_long_username(self): form = LoginForm(self.too_long_username) self.assertFalse(form.is_valid()) self.assertEqual( form.errors, {'username': [u'Ensure this value has at most 64' + ' characters (it has 65).']} ) def test_too_long_password(self): form = LoginForm(self.too_long_password) self.assertFalse(form.is_valid()) self.assertEqual( form.errors, {'password': [u'Ensure this value has at most 64' + ' characters (it has 65).']} ) def test_no_username(self): form = LoginForm({'password': 'test'}) self.assertFalse(form.is_valid()) self.assertEqual( form.errors, {'username': [u'This field is required.']} ) def test_no_password(self): form = LoginForm({'username': 'test'}) self.assertFalse(form.is_valid()) self.assertEqual( form.errors, {'password': [u'This field is required.']} ) def test_empty_username(self): form = LoginForm({'username': '', 'password': 'test'}) self.assertFalse(form.is_valid()) self.assertEqual( form.errors, {'username': [u'This field is required.']} ) def test_empty_password(self): form = LoginForm({'username': 'test', 'password': ''}) self.assertFalse(form.is_valid()) self.assertEqual( form.errors, {'password': [u'This field is required.']} ) class RegistrationFormTests(TestCase): def setUp(self): self.valid_form_data = { 'email': 'test@example.com', 'username': 'test', 'password': 'test', 'password_confirmation': 'test' } self.invalid_email = { 'email': 'test(at)example.com', 'username': 'test', 'password': 'test', 'password_confirmation': 'test' } self.non_matching_passwords = { 'email': 'test@example.com', 'username': 'test', 'password': 'test1', 'password_confirmation': 'test2' } # some tests can be skipped because of the coverage of LoginFormTests def test_valid_input(self): form = RegistrationForm(self.valid_form_data) self.assertTrue(form.is_valid()) def test_invalid_email(self): form = RegistrationForm(self.invalid_email) self.assertFalse(form.is_valid()) self.assertEqual( form.errors, {'email': [u'Enter a valid email address.']} ) def test_non_matching_passwords(self): form = RegistrationForm(self.non_matching_passwords) self.assertFalse(form.is_valid()) self.assertEqual( form.errors, {'__all__': [u"Passwords don't match."]} )
[]
[]
[]
archives/007MrNiko_Stepper.zip
accounts/urls.py
from django.urls import path from accounts import views #connecting of authorisation form app_name = 'auth' urlpatterns = [ path('login/', views.login_view, name='login'), path('logout/', views.logout_view, name='logout'), path('register/', views.register, name='register'), ]
[]
[]
[]
archives/007MrNiko_Stepper.zip
accounts/views.py
from django.shortcuts import render, redirect from django.contrib.auth import authenticate, login, logout from django.contrib.auth.models import User from accounts.forms import LoginForm, RegistrationForm from lists.forms import TodoForm #login request def login_view(request): if request.method == 'POST': form = LoginForm(request.POST) if form.is_valid(): user = authenticate( username=request.POST['username'], password=request.POST['password'] ) if user is not None: if user.is_active: login(request, user) return redirect('lists:index') else: return render(request, 'accounts/login.html', {'form': form}) else: return render(request, 'accounts/login.html', {'form': LoginForm()}) return redirect('lists:index') #register request def register(request): if request.method == 'POST': form = RegistrationForm(request.POST) if form.is_valid(): User.objects.create_user( username=request.POST['username'], email=request.POST['email'], password=request.POST['password'] ) return redirect('auth:login') else: return render(request, 'accounts/register.html', {'form': form}) else: return render( request, 'accounts/register.html', {'form': RegistrationForm()} ) #logout request def logout_view(request): logout(request) return redirect('lists:index')
[]
[]
[]
archives/007MrNiko_Stepper.zip
api/__init__.py
[]
[]
[]
archives/007MrNiko_Stepper.zip
api/migrations/__init__.py
[]
[]
[]
archives/007MrNiko_Stepper.zip
api/serializers.py
from django.contrib.auth.models import User from rest_framework import serializers from lists.models import TodoList, Todo class UserSerializer(serializers.ModelSerializer): todolists = serializers.PrimaryKeyRelatedField( many=True, queryset=TodoList.objects.all() ) class Meta: model = User fields = ('id', 'username', 'last_login', 'date_joined', 'todolists') class TodoListSerializer(serializers.ModelSerializer): creator = serializers.ReadOnlyField(source='creator.username') class Meta: model = TodoList fields = ('id', 'title', 'created_at', 'creator', 'todos') class TodoSerializer(serializers.ModelSerializer): creator = serializers.ReadOnlyField(source='creator.username') class Meta: model = Todo fields = ( 'id', 'todolist', 'description', 'created_at', 'creator', 'is_finished', 'finished_at' )
[]
[]
[]
archives/007MrNiko_Stepper.zip
api/tests.py
from django.urls import reverse from django.contrib.auth.models import User from rest_framework import status from rest_framework.test import APITestCase from lists.models import TodoList class UserTests(APITestCase): def setUp(self): User.objects.create_user('test', 'test@example.com', 'test') self.client.login(username='test', password='test') def tearDown(self): User.objects.get(username='test').delete() self.client.logout() def test_post_on_read_only(self): response = self.client.post('api:user-list', {}, format='json') self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) def test_get_user_if_not_admin(self): # get user (test user from setup) get_response = self.client.get('/api/users/{0}/'.format(1)) self.assertEqual(get_response.status_code, status.HTTP_403_FORBIDDEN) def test_get_user_if_admin(self): # create admin user and login as such User.objects.create_superuser('admin', 'admin@example.com', 'admin') self.client.login(username='admin', password='admin') # get user (test user from setup) get_response = self.client.get('/api/users/{0}/'.format(1)) self.assertEqual(get_response.status_code, status.HTTP_200_OK) # check user self.assertEqual(get_response.data['username'], 'test') class TodoListTests(APITestCase): def setUp(self): User.objects.create_user('test', 'test@example.com', 'test') self.client.login(username='test', password='test') self.test_data = {'title': 'some other title', 'todos': []} def tearDown(self): User.objects.get(username='test').delete() self.client.logout() def post_new_todolist(self, data): url = reverse('api:todolist-list') return self.client.post(url, data, format='json') def test_create_todolist(self): response = self.post_new_todolist(self.test_data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(response.data['title'], self.test_data['title']) def test_get_todolist(self): # add todolist post_response = self.post_new_todolist(self.test_data) self.assertEqual(post_response.status_code, status.HTTP_201_CREATED) # get todolist todolist_id = post_response.data['id'] self.assertEqual(todolist_id, 1) get_response = self.client.get( '/api/todolists/{0}/'.format(todolist_id) ) self.assertEqual(get_response.status_code, status.HTTP_200_OK) # check todolist self.assertEqual(get_response.data, post_response.data) def test_get_when_not_logged_in(self): # add some data post_response = self.post_new_todolist(self.test_data) self.assertEqual(post_response.status_code, status.HTTP_201_CREATED) # make sure the user is logged out self.client.logout() response = self.client.get('/api/todolists/1/') # expect 200, because reading is allowed for everybody self.assertEqual(response.status_code, status.HTTP_200_OK) def test_get_non_existent_todolist(self): response = self.client.get('/api/todolists/0/') self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) def test_post_for_anon_users(self): # make sure the user is logged out self.client.logout() # try posting a todolist response = self.post_new_todolist(self.test_data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) def test_put_todolist(self): # add todolist post_response = self.post_new_todolist(self.test_data) self.assertEqual(post_response.status_code, status.HTTP_201_CREATED) # put todolist todolist_id = post_response.data['id'] put_data = post_response.data put_data['title'] = 'changed title' put_response = self.client.put( '/api/todolists/{0}/'.format(todolist_id), put_data, format='json' ) self.assertEqual(put_response.status_code, status.HTTP_200_OK) get_response = self.client.get( '/api/todolists/{0}/'.format(todolist_id) ) self.assertEqual(put_response.status_code, status.HTTP_200_OK) self.assertEqual(get_response.data['title'], 'changed title') def test_delete_todolist(self): # add todolist post_response = self.post_new_todolist(self.test_data) self.assertEqual(post_response.status_code, status.HTTP_201_CREATED) # delete todolist todolist_id = post_response.data['id'] delete_response = self.client.delete( '/api/todolists/{0}/'.format(todolist_id) ) self.assertEqual( delete_response.status_code, status.HTTP_204_NO_CONTENT ) # get todolist and expect 404 get_response = self.client.get( '/api/todolists/{0}/'.format(todolist_id) ) self.assertEqual(get_response.status_code, status.HTTP_404_NOT_FOUND) class TodoTests(APITestCase): def setUp(self): self.test_user = User.objects.create_user( 'test', 'test@example.com', 'test' ) self.client.login(username='test', password='test') self.test_todolist = TodoList( title='some title', creator=self.test_user ) self.test_todolist.save() self.test_data = { 'description': 'some description', 'todolist': self.test_todolist.id } def tearDown(self): test_user = User.objects.get(username='test') test_user.delete() self.client.logout() def post_new_todo(self, data): url = reverse('api:todo-list') return self.client.post(url, data, format='json') def test_create_todo(self): response = self.post_new_todo(self.test_data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual( response.data['description'], self.test_data['description'] ) def test_get_todo(self): # add todo post_response = self.post_new_todo(self.test_data) self.assertEqual(post_response.status_code, status.HTTP_201_CREATED) # get todo todo_id = post_response.data['id'] self.assertEqual(todo_id, 1) get_response = self.client.get( '/api/todos/{0}/'.format(todo_id) ) self.assertEqual(get_response.status_code, status.HTTP_200_OK) # check todo self.assertEqual(get_response.data, post_response.data) def test_get_when_not_logged_in(self): # add some data post_response = self.post_new_todo(self.test_data) self.assertEqual(post_response.status_code, status.HTTP_201_CREATED) # make sure the user is logged out self.client.logout() response = self.client.get('/api/todos/1/') # expect 200, because reading is allowed for everybody self.assertEqual(response.status_code, status.HTTP_200_OK) def test_get_non_existent_todo(self): response = self.client.get('/api/todo/0/') self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) def test_post_for_anon_users(self): # make sure the user is logged out self.client.logout() # try posting a todo response = self.post_new_todo(self.test_data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) def test_put_todo(self): # add todo post_response = self.post_new_todo(self.test_data) self.assertEqual(post_response.status_code, status.HTTP_201_CREATED) # put todo todo_id = post_response.data['id'] put_data = post_response.data put_data['description'] = 'changed description' put_response = self.client.put( '/api/todos/{0}/'.format(todo_id), put_data, format='json' ) self.assertEqual(put_response.status_code, status.HTTP_200_OK) get_response = self.client.get( '/api/todos/{0}/'.format(todo_id) ) self.assertEqual(put_response.status_code, status.HTTP_200_OK) self.assertEqual( get_response.data['description'], 'changed description' ) def test_put_todo_changing_status(self): # add todo post_response = self.post_new_todo(self.test_data) self.assertEqual(post_response.status_code, status.HTTP_201_CREATED) # put todo todo_id = post_response.data['id'] put_data = post_response.data put_data['is_finished'] = True put_response = self.client.put( '/api/todos/{0}/'.format(todo_id), put_data, format='json' ) self.assertEqual(put_response.status_code, status.HTTP_200_OK) get_response = self.client.get( '/api/todos/{0}/'.format(todo_id) ) self.assertEqual(put_response.status_code, status.HTTP_200_OK) self.assertEqual( get_response.data['is_finished'], True ) def test_delete_todo(self): # add todo post_response = self.post_new_todo(self.test_data) self.assertEqual(post_response.status_code, status.HTTP_201_CREATED) # delete todolist todo_id = post_response.data['id'] delete_response = self.client.delete( '/api/todos/{0}/'.format(todo_id) ) self.assertEqual( delete_response.status_code, status.HTTP_204_NO_CONTENT ) # get todolist and expect 404 get_response = self.client.get( '/api/todos/{0}/'.format(todo_id) ) self.assertEqual(get_response.status_code, status.HTTP_404_NOT_FOUND)
[]
[]
[]
archives/007MrNiko_Stepper.zip
api/urls.py
from django.urls import path, include from rest_framework.routers import DefaultRouter from api import views router = DefaultRouter() router.register(r'users', views.UserViewSet) router.register(r'todolists', views.TodoListViewSet) router.register(r'todos', views.TodoViewSet) #connecting of api app_name = 'api' urlpatterns = [ path('', include(router.urls)), ]
[]
[]
[]
archives/007MrNiko_Stepper.zip
api/views.py
from django.contrib.auth.models import User from rest_framework import permissions, viewsets from api.serializers import UserSerializer, TodoListSerializer, TodoSerializer from lists.models import TodoList, Todo class IsCreatorOrReadOnly(permissions.BasePermission): """ Object-level permission to only allow owners of an object to edit it. Assumes the model instance has an `creator` attribute. """ def has_object_permission(self, request, view, obj): # Read permissions are allowed to any request, # so we'll always allow GET, HEAD or OPTIONS requests. if request.method in permissions.SAFE_METHODS: return True # If the object doesn't have a creator (i.e. anon) allow all methods. if not obj.creator: return True # Instance must have an attribute named `creator`. return obj.creator == request.user class UserViewSet(viewsets.ModelViewSet): queryset = User.objects.all() serializer_class = UserSerializer permission_classes = (permissions.IsAdminUser,) class TodoListViewSet(viewsets.ModelViewSet): queryset = TodoList.objects.all() serializer_class = TodoListSerializer permission_classes = (IsCreatorOrReadOnly,) def perform_create(self, serializer): user = self.request.user creator = user if user.is_authenticated else None serializer.save(creator=creator) class TodoViewSet(viewsets.ModelViewSet): queryset = Todo.objects.all() serializer_class = TodoSerializer permission_classes = (IsCreatorOrReadOnly,) def perform_create(self, serializer): user = self.request.user creator = user if user.is_authenticated else None serializer.save(creator=creator)
[]
[]
[]
archives/007MrNiko_Stepper.zip
lists/__init__.py
[]
[]
[]
archives/007MrNiko_Stepper.zip
lists/admin.py
from django.contrib import admin # Register your models here.
[]
[]
[]
archives/007MrNiko_Stepper.zip
lists/forms.py
from django import forms def widget_attrs(placeholder): return {'class': 'u-full-width', 'placeholder': placeholder} def form_kwargs(widget, label='', max_length=128): return {'widget': widget, 'label': label, 'max_length': max_length} class TodoForm(forms.Form): description = forms.CharField( **form_kwargs( widget=forms.TextInput(attrs=widget_attrs('Enter what you want todo')) ) ) class TodoListForm(forms.Form): title = forms.CharField( **form_kwargs( widget=forms.TextInput( attrs=widget_attrs('Enter a title of your new todo list') ) ) )
[]
[]
[]
archives/007MrNiko_Stepper.zip
lists/migrations/0001_initial.py
# Generated by Django 2.0 on 2017-12-02 17:39 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Todo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('description', models.CharField(max_length=128)), ('created_at', models.DateTimeField(auto_now=True)), ('finished_at', models.DateTimeField(null=True)), ('is_finished', models.BooleanField(default=False)), ('creator', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='todos', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ('created_at',), }, ), migrations.CreateModel( name='TodoList', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(default='Planning is Good', max_length=128)), ('created_at', models.DateTimeField(auto_now=True)), ('creator', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='todolists', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ('created_at',), }, ), migrations.AddField( model_name='todo', name='todolist', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='todos', to='lists.TodoList'), ), ]
[]
[]
[]
archives/007MrNiko_Stepper.zip
lists/migrations/__init__.py
[]
[]
[]
archives/007MrNiko_Stepper.zip
lists/models.py
from django.db import models from django.contrib.auth.models import User from django.utils import timezone class TodoList(models.Model): title = models.CharField(max_length=128, default='List') created_at = models.DateTimeField(auto_now=True) creator = models.ForeignKey(User, null=True, related_name='todolists', on_delete=models.CASCADE) class Meta: ordering = ('created_at',) def __str__(self): return self.title def count(self): return self.todos.count() def count_finished(self): return self.todos.filter(is_finished=True).count() def count_open(self): return self.todos.filter(is_finished=False).count() class Todo(models.Model): description = models.CharField(max_length=128) created_at = models.DateTimeField(auto_now=True) finished_at = models.DateTimeField(null=True) is_finished = models.BooleanField(default=False) creator = models.ForeignKey(User, null=True, related_name='todos', on_delete=models.CASCADE) todolist = models.ForeignKey(TodoList, related_name='todos', on_delete=models.CASCADE) class Meta: ordering = ('created_at',) def __str__(self): return self.description def close(self): self.is_finished = True self.finished_at = timezone.now() self.save() def reopen(self): self.is_finished = False self.finished_at = None self.save()
[]
[]
[]
archives/007MrNiko_Stepper.zip
lists/templatetags/__init__.py
[]
[]
[]
archives/007MrNiko_Stepper.zip
lists/templatetags/lists_extras.py
from django import template from datetime import datetime register = template.Library() @register.filter('humanize') def humanize_time(dt, past_='ago', future_='from now', default='just now'): """ Returns string representing 'time since' or 'time until' e.g. 3 days ago, 5 hours from now etc. """ now = datetime.utcnow() # remove tzinfo dt = dt.replace(tzinfo=None) if now > dt: diff = now - dt dt_is_past = True else: diff = dt - now dt_is_past = False periods = ( (diff.days // 365, 'year', 'years'), (diff.days // 30, 'month', 'months'), (diff.days // 7, 'week', 'weeks'), (diff.days, 'day', 'days'), (diff.seconds // 3600, 'hour', 'hours'), (diff.seconds // 60, 'minute', 'minutes'), (diff.seconds, 'second', 'seconds'), ) for period, singular, plural in periods: if period: return '%d %s %s' % ( period, singular if period == 1 else plural, past_ if dt_is_past else future_ ) return default @register.filter('in_seconds') def in_seconds(dt): return int( (dt.replace(tzinfo=None) - datetime(1970, 1, 1)).total_seconds() )
[]
[]
[]
archives/007MrNiko_Stepper.zip
lists/tests.py
from django.test import TestCase from django.urls import reverse from django.contrib.auth.models import User from lists.forms import TodoForm, TodoListForm from lists.models import Todo, TodoList from unittest import skip class ListTests(TestCase): def setUp(self): self.user = User.objects.create_user( 'test', 'test@example.com', 'test' ) self.todolist = TodoList(title='test title', creator=self.user) self.todolist.save() self.todo = Todo( description='save todo', todolist_id=self.todolist.id, creator=self.user ) self.todo.save() self.client.login(username='test', password='test') def tearDown(self): self.client.logout() self.user.delete() self.todolist.delete() self.todo.delete() def test_get_index_page(self): response = self.client.get(reverse('lists:index')) self.assertTemplateUsed(response, 'lists/index.html') self.assertIsInstance(response.context['form'], TodoForm) def test_add_todo_to_index_page(self): response = self.client.post( reverse('lists:index'), {'description': 'test'} ) self.assertTemplateUsed(response, 'lists/index.html') self.assertIsInstance(response.context['form'], TodoForm) def test_get_todolist_view(self): response = self.client.get( reverse( 'lists:todolist', kwargs={'todolist_id': self.todolist.id} ) ) self.assertTemplateUsed(response, 'lists/todolist.html') self.assertIsInstance(response.context['form'], TodoForm) def test_add_todo_to_todolist_view(self): response = self.client.post( reverse( 'lists:todolist', kwargs={'todolist_id': self.todolist.id} ), {'description': 'test'} ) self.assertTemplateUsed(response, 'lists/todolist.html') self.assertIsInstance(response.context['form'], TodoForm) self.assertContains(response, 'test') def test_get_todolist_overview(self): response = self.client.get(reverse('lists:overview')) self.assertTemplateUsed(response, 'lists/overview.html') self.assertIsInstance(response.context['form'], TodoListForm) def test_get_todolist_overview_redirect_when_not_logged_in(self): self.client.logout() response = self.client.get(reverse('lists:overview')) self.assertRedirects(response, '/auth/login/?next=/todolists/') def test_add_todolist_to_todolist_overview(self): response = self.client.post( reverse('lists:overview'), {'title': 'some title'} ) self.assertRedirects( response, '/todolist/add/', target_status_code=302, fetch_redirect_response=False ) class TodoListFormTests(TestCase): def setUp(self): self.vaild_form_data = { 'title': 'some title' } self.too_long_title = { 'title': 129 * 'X' } def test_valid_input(self): form = TodoListForm(self.vaild_form_data) self.assertTrue(form.is_valid()) def test_no_title(self): form = TodoListForm({}) self.assertFalse(form.is_valid()) self.assertEqual( form.errors, {'title': [u'This field is required.']} ) def test_empty_title(self): form = TodoListForm({'title': ''}) self.assertFalse(form.is_valid()) self.assertEqual( form.errors, {'title': [u'This field is required.']} ) def test_too_long_title(self): form = TodoListForm(self.too_long_title) self.assertFalse(form.is_valid()) self.assertEqual( form.errors, {'title': [u'Ensure this value has at most 128 ' + 'characters (it has 129).']} ) class TodoFormTests(TestCase): def setUp(self): self.valid_form_data = { 'description': 'something to be done' } self.too_long_description = { 'description': 129 * 'X' } def test_valid_input(self): form = TodoForm(self.valid_form_data) self.assertTrue(form.is_valid()) def test_no_description(self): form = TodoForm({}) self.assertFalse(form.is_valid()) self.assertEqual( form.errors, {'description': [u'This field is required.']} ) def test_empty_description(self): form = TodoForm({'description': ''}) self.assertFalse(form.is_valid()) self.assertEqual( form.errors, {'description': [u'This field is required.']} ) def test_too_title(self): form = TodoForm(self.too_long_description) self.assertFalse(form.is_valid()) self.assertEqual( form.errors, {'description': [u'Ensure this value has at most 128 ' + 'characters (it has 129).']} ) class ListModelTests(TestCase): def setUp(self): self.user = User.objects.create_user( 'test', 'test@example.com', 'test' ) self.todolist = TodoList(title='title', creator=self.user) self.todolist.save() self.todo = Todo( description='description', todolist_id=self.todolist.id, creator=self.user ) self.todo.save() def tearDown(self): self.todo.delete() self.todolist.delete() self.user.delete() def test_count_todos(self): self.assertEqual(self.todolist.count(), 1) new_todo = Todo( description='test', todolist_id=self.todolist.id, creator=self.user ) new_todo.save() self.assertEqual(self.todolist.count(), 2) def test_count_open_todos(self): self.assertEqual(self.todolist.count_open(), 1) new_todo = Todo( description='test', todolist_id=self.todolist.id, creator=self.user ) new_todo.save() self.assertEqual(self.todolist.count_open(), 2) new_todo.close() self.assertEqual(self.todolist.count_open(), 1) def test_count_closed_todos(self): self.assertEqual(self.todolist.count_finished(), 0) new_todo = Todo( description='test', todolist_id=self.todolist.id, creator=self.user ) new_todo.close() self.todo.close() self.assertEqual(self.todolist.count_finished(), 2) self.assertIsNotNone(new_todo.finished_at) self.todo.reopen() self.assertEqual(self.todolist.count_finished(), 1) self.assertIsNone(self.todo.finished_at)
[]
[]
[]
archives/007MrNiko_Stepper.zip
lists/urls.py
from django.urls import path from lists import views #connecting of lists app_name = 'lists' urlpatterns = [ path('', views.index, name='index'), path('todolist/<int:todolist_id>/', views.todolist, name='todolist'), path('todolist/new/', views.new_todolist, name='new_todolist'), path('todolist/add/', views.add_todolist, name='add_todolist'), path('todo/add/<int:todolist_id>/', views.add_todo, name='add_todo'), path('todolists/', views.overview, name='overview'), ]
[]
[]
[]
archives/007MrNiko_Stepper.zip
lists/views.py
from django.shortcuts import get_object_or_404, render, redirect from django.contrib.auth.decorators import login_required from django.http import HttpResponse from lists.models import TodoList, Todo from lists.forms import TodoForm, TodoListForm def index(request): return render(request, 'lists/index.html', {'form': TodoForm()}) def todolist(request, todolist_id): todolist = get_object_or_404(TodoList, pk=todolist_id) if request.method == 'POST': redirect('lists:add_todo', todolist_id=todolist_id) return render( request, 'lists/todolist.html', {'todolist': todolist, 'form': TodoForm()} ) def add_todo(request, todolist_id): if request.method == 'POST': form = TodoForm(request.POST) if form.is_valid(): user = request.user if request.user.is_authenticated else None todo = Todo( description=request.POST['description'], todolist_id=todolist_id, creator=user ) todo.save() return redirect('lists:todolist', todolist_id=todolist_id) else: return render(request, 'lists/todolist.html', {'form': form}) return redirect('lists:index') @login_required def overview(request): if request.method == 'POST': return redirect('lists:add_todolist') return render(request, 'lists/overview.html', {'form': TodoListForm()}) def new_todolist(request): if request.method == 'POST': form = TodoForm(request.POST) if form.is_valid(): # create default todolist user = request.user if request.user.is_authenticated else None todolist = TodoList(creator=user) todolist.save() todo = Todo( description=request.POST['description'], todolist_id=todolist.id, creator=user ) todo.save() return redirect('lists:todolist', todolist_id=todolist.id) else: return render(request, 'lists/index.html', {'form': form}) return redirect('lists:index') def add_todolist(request): if request.method == 'POST': form = TodoListForm(request.POST) if form.is_valid(): user = request.user if request.user.is_authenticated else None todolist = TodoList(title=request.POST['title'], creator=user) todolist.save() return redirect('lists:todolist', todolist_id=todolist.id) else: return render(request, 'lists/overview.html', {'form': form}) return redirect('lists:index')
[]
[]
[]
archives/007MrNiko_Stepper.zip
manage.py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "todolist.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[]
[]
[]
archives/007MrNiko_Stepper.zip
todolist/__init__.py
[]
[]
[]
archives/007MrNiko_Stepper.zip
todolist/settings.py
""" Django settings for todolist project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! #SECRET_KEY = '@e2(yx)v&tgh3_s=0yja-i!dpebxsz^dg47x)-k&kq_3zf*9e*' SECRET_KEY = os.environ.get('DJANGO_SECRET_KEY', 'cg#p$g+j9tax!#a3cup@1$8obt2_+&k3q+pmu)5%asj6yjpkag') # SECURITY WARNING: don't run with debug turned on in production! #DEBUG = False DEBUG = bool( os.environ.get('DJANGO_DEBUG', True) ) ALLOWED_HOSTS = ['stepper-v2.herokuapp.com', '127.0.0.1'] # Application definition INSTALLED_APPS = ( 'django.contrib.staticfiles', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.sites', 'todolist', 'lists', 'accounts', 'rest_framework', 'api', 'about', 'weather', ) SITE_ID = 1 MIDDLEWARE = ( 'django.middleware.security.SecurityMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'todolist.urls' WSGI_APPLICATION = 'todolist.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ # Login settings LOGIN_URL = '/auth/login/' LOGOUT_URL = '/auth/logout/' # rest (api) framework REST_FRAMEWORK = { 'DEFAULT_PERMISSION_CLASSES': [ 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly' ] } TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], 'debug': True, }, }, ] # Heroku: Update database configuration from $DATABASE_URL. import dj_database_url db_from_env = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(db_from_env) # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ # The absolute path to the directory where collectstatic will collect static files for deployment. STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') # The URL to use when referring to static files (where they will be served from) STATIC_URL = '/static/' # Simplified static file serving. # https://warehouse.python.org/project/whitenoise/ STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage'
[]
[]
[]
archives/007MrNiko_Stepper.zip
todolist/urls.py
from django.urls import path, include from django.contrib import admin #connecting of urls urlpatterns = [ path('', include('lists.urls')), path('auth/', include('accounts.urls')), path('api/', include('api.urls')), path('api-auth/', include('rest_framework.urls')), path('admin/', admin.site.urls), path('weather/', include('weather.urls')), path('about/', include('about.urls')), ]
[]
[]
[]
archives/007MrNiko_Stepper.zip
todolist/wsgi.py
""" WSGI config for todolist project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.7/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "todolist.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
[]
[]
[]
archives/007MrNiko_Stepper.zip
weather/urls.py
from django.urls import path from weather import views #creating of the weather_app app_name = 'weather' urlpatterns = [ path('your_weather', views.index, name='weather'), ]
[]
[]
[]
archives/007MrNiko_Stepper.zip
weather/views.py
from django.shortcuts import render, redirect from django.http import HttpResponse #connecting of html file (section "weather") def index(request): return render(request, 'index.html')
[]
[]
[]
archives/097475_hansberger.zip
config/__init__.py
[]
[]
[]
archives/097475_hansberger.zip
config/settings/__init__.py
[]
[]
[]
archives/097475_hansberger.zip
config/settings/base.py
""" Base settings to build other settings files upon. """ import environ ASGI_APPLICATION = 'hansberger.routing.application' DATA_UPLOAD_MAX_MEMORY_SIZE = 104857600 ROOT_DIR = ( environ.Path(__file__) - 3 ) # (hansberger/config/settings/base.py - 3 = hansberger/) APPS_DIR = ROOT_DIR.path("hansberger") env = environ.Env() READ_DOT_ENV_FILE = env.bool("DJANGO_READ_DOT_ENV_FILE", default=False) if READ_DOT_ENV_FILE: # OS environment variables take precedence over variables from .env env.read_env(str(ROOT_DIR.path(".env"))) # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = env.bool("DJANGO_DEBUG", False) # Local time zone. Choices are # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # though not all of them may be available with every OS. # In Windows, this must be set to your system time zone. TIME_ZONE = "Europe/Rome" # https://docs.djangoproject.com/en/dev/ref/settings/#language-code LANGUAGE_CODE = "en-us" # https://docs.djangoproject.com/en/dev/ref/settings/#site-id SITE_ID = 1 # https://docs.djangoproject.com/en/dev/ref/settings/#use-i18n USE_I18N = True # https://docs.djangoproject.com/en/dev/ref/settings/#use-l10n USE_L10N = True # https://docs.djangoproject.com/en/dev/ref/settings/#use-tz USE_TZ = True # DATABASES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#databases DATABASES = { "default": env.db("DATABASE_URL", default="postgres:///hansberger") } DATABASES["default"]["ATOMIC_REQUESTS"] = True # URLS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#root-urlconf ROOT_URLCONF = "config.urls" # https://docs.djangoproject.com/en/dev/ref/settings/#wsgi-application WSGI_APPLICATION = "config.wsgi.application" # APPS # ------------------------------------------------------------------------------ DJANGO_APPS = [ "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.sites", "django.contrib.messages", "django.contrib.staticfiles", # "django.contrib.humanize", # Handy template tags "django.contrib.admin", ] THIRD_PARTY_APPS = [ "channels", "crispy_forms", "allauth", "allauth.account", "allauth.socialaccount", "rest_framework", ] LOCAL_APPS = [ "hansberger.users.apps.UsersAppConfig", "hansberger.research.apps.ResearchConfig", "hansberger.datasets.apps.DatasetsConfig", "hansberger.analysis.apps.AnalysisConfig" # Your stuff: custom apps go here ] DEBUG_TOOLBAR_PANELS = ( 'debug_toolbar.panels.timer.TimerDebugPanel', 'pympler.panels.MemoryPanel', ) # https://docs.djangoproject.com/en/dev/ref/settings/#installed-apps INSTALLED_APPS = DJANGO_APPS + THIRD_PARTY_APPS + LOCAL_APPS INSTALLED_APPS = INSTALLED_APPS + ['pympler'] # MIGRATIONS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#migration-modules MIGRATION_MODULES = {"sites": "hansberger.contrib.sites.migrations"} # AUTHENTICATION # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#authentication-backends AUTHENTICATION_BACKENDS = [ "django.contrib.auth.backends.ModelBackend", "allauth.account.auth_backends.AuthenticationBackend", ] # https://docs.djangoproject.com/en/dev/ref/settings/#auth-user-model AUTH_USER_MODEL = "users.User" # https://docs.djangoproject.com/en/dev/ref/settings/#login-redirect-url LOGIN_REDIRECT_URL = "users:redirect" # https://docs.djangoproject.com/en/dev/ref/settings/#login-url LOGIN_URL = "account_login" # PASSWORDS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#password-hashers PASSWORD_HASHERS = [ # https://docs.djangoproject.com/en/dev/topics/auth/passwords/#using-argon2-with-django "django.contrib.auth.hashers.Argon2PasswordHasher", "django.contrib.auth.hashers.PBKDF2PasswordHasher", "django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher", "django.contrib.auth.hashers.BCryptSHA256PasswordHasher", "django.contrib.auth.hashers.BCryptPasswordHasher", ] # https://docs.djangoproject.com/en/dev/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator" }, {"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator"}, {"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator"}, {"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator"}, ] # MIDDLEWARE # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#middleware MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", ] # STATIC # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#static-root STATIC_ROOT = str(ROOT_DIR("staticfiles")) # https://docs.djangoproject.com/en/dev/ref/settings/#static-url STATIC_URL = "/static/" # https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#std:setting-STATICFILES_DIRS STATICFILES_DIRS = [str(APPS_DIR.path("static"))] # https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#staticfiles-finders STATICFILES_FINDERS = [ "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", ] # MEDIA # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#media-root MEDIA_ROOT = str(APPS_DIR("media")) # https://docs.djangoproject.com/en/dev/ref/settings/#media-url MEDIA_URL = "/media/" # TEMPLATES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES = [ { # https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-TEMPLATES-BACKEND "BACKEND": "django.template.backends.django.DjangoTemplates", # https://docs.djangoproject.com/en/dev/ref/settings/#template-dirs "DIRS": [str(APPS_DIR.path("templates"))], "OPTIONS": { # https://docs.djangoproject.com/en/dev/ref/settings/#template-debug "debug": DEBUG, # https://docs.djangoproject.com/en/dev/ref/settings/#template-loaders # https://docs.djangoproject.com/en/dev/ref/templates/api/#loader-types "loaders": [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ], # https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.template.context_processors.i18n", "django.template.context_processors.media", "django.template.context_processors.static", "django.template.context_processors.tz", "django.contrib.messages.context_processors.messages", ], }, } ] # http://django-crispy-forms.readthedocs.io/en/latest/install.html#template-packs CRISPY_TEMPLATE_PACK = "bootstrap4" # FIXTURES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#fixture-dirs FIXTURE_DIRS = (str(APPS_DIR.path("fixtures")),) # SECURITY # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#session-cookie-httponly SESSION_COOKIE_HTTPONLY = True # https://docs.djangoproject.com/en/dev/ref/settings/#csrf-cookie-httponly CSRF_COOKIE_HTTPONLY = True # https://docs.djangoproject.com/en/dev/ref/settings/#secure-browser-xss-filter SECURE_BROWSER_XSS_FILTER = True # https://docs.djangoproject.com/en/dev/ref/settings/#x-frame-options X_FRAME_OPTIONS = 'SAMEORIGIN' # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = env( "DJANGO_EMAIL_BACKEND", default="django.core.mail.backends.smtp.EmailBackend" ) # ADMIN # ------------------------------------------------------------------------------ # Django Admin URL. ADMIN_URL = "admin/" # https://docs.djangoproject.com/en/dev/ref/settings/#admins ADMINS = [("""Matteo Belenchia and Sebastiano Verdolini""", "sebastiano.verdolini@gmail.com")] # https://docs.djangoproject.com/en/dev/ref/settings/#managers MANAGERS = ADMINS # django-allauth # ------------------------------------------------------------------------------ ACCOUNT_ALLOW_REGISTRATION = env.bool("DJANGO_ACCOUNT_ALLOW_REGISTRATION", True) # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_AUTHENTICATION_METHOD = "username" # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_EMAIL_REQUIRED = True # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_EMAIL_VERIFICATION = "mandatory" # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_ADAPTER = "hansberger.users.adapters.AccountAdapter" # https://django-allauth.readthedocs.io/en/latest/configuration.html SOCIALACCOUNT_ADAPTER = "hansberger.users.adapters.SocialAccountAdapter" # Your stuff... # ------------------------------------------------------------------------------
[]
[]
[]
archives/097475_hansberger.zip
config/settings/local.py
from .base import * # noqa from .base import env # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = True # https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = env( "DJANGO_SECRET_KEY", default="0mtXWuK6ERxey9kqse5UUrxcBsTOjQayYqfOLE4fn962rOwH0J1q01X4kZfTm6U7", ) # https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts ALLOWED_HOSTS = ["localhost", "0.0.0.0", "127.0.0.1"] # CACHES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#caches CACHES = { "default": { "BACKEND": "django.core.cache.backends.locmem.LocMemCache", "LOCATION": "", } } # TEMPLATES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES[0]["OPTIONS"]["debug"] = DEBUG # noqa F405 # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = env( "DJANGO_EMAIL_BACKEND", default="django.core.mail.backends.console.EmailBackend" ) # https://docs.djangoproject.com/en/dev/ref/settings/#email-host EMAIL_HOST = "localhost" # https://docs.djangoproject.com/en/dev/ref/settings/#email-port EMAIL_PORT = 1025 # django-debug-toolbar # ------------------------------------------------------------------------------ # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#prerequisites INSTALLED_APPS += ["debug_toolbar"] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#middleware MIDDLEWARE += ["debug_toolbar.middleware.DebugToolbarMiddleware"] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/configuration.html#debug-toolbar-config DEBUG_TOOLBAR_CONFIG = { "DISABLE_PANELS": ["debug_toolbar.panels.redirects.RedirectsPanel"], "SHOW_TEMPLATE_CONTEXT": True, } # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#internal-ips INTERNAL_IPS = ["127.0.0.1", "10.0.2.2"] # django-extensions # ------------------------------------------------------------------------------ # https://django-extensions.readthedocs.io/en/latest/installation_instructions.html#configuration INSTALLED_APPS += ["django_extensions"] # noqa F405 # Your stuff... # ------------------------------------------------------------------------------
[]
[]
[]
archives/097475_hansberger.zip
config/settings/production.py
from .base import * # noqa from .base import env # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = env("DJANGO_SECRET_KEY") # https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts ALLOWED_HOSTS = env.list("DJANGO_ALLOWED_HOSTS", default=["example.com"]) # DATABASES # ------------------------------------------------------------------------------ DATABASES["default"] = env.db("DATABASE_URL") # noqa F405 DATABASES["default"]["ATOMIC_REQUESTS"] = True # noqa F405 DATABASES["default"]["CONN_MAX_AGE"] = env.int("CONN_MAX_AGE", default=60) # noqa F405 # CACHES # ------------------------------------------------------------------------------ CACHES = { "default": { "BACKEND": "django_redis.cache.RedisCache", "LOCATION": env("REDIS_URL"), "OPTIONS": { "CLIENT_CLASS": "django_redis.client.DefaultClient", # Mimicing memcache behavior. # http://niwinz.github.io/django-redis/latest/#_memcached_exceptions_behavior "IGNORE_EXCEPTIONS": True, }, } } # SECURITY # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#secure-proxy-ssl-header SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") # https://docs.djangoproject.com/en/dev/ref/settings/#secure-ssl-redirect SECURE_SSL_REDIRECT = env.bool("DJANGO_SECURE_SSL_REDIRECT", default=True) # https://docs.djangoproject.com/en/dev/ref/settings/#session-cookie-secure SESSION_COOKIE_SECURE = True # https://docs.djangoproject.com/en/dev/ref/settings/#csrf-cookie-secure CSRF_COOKIE_SECURE = True # https://docs.djangoproject.com/en/dev/topics/security/#ssl-https # https://docs.djangoproject.com/en/dev/ref/settings/#secure-hsts-seconds # TODO: set this to 60 seconds first and then to 518400 once you prove the former works SECURE_HSTS_SECONDS = 60 # https://docs.djangoproject.com/en/dev/ref/settings/#secure-hsts-include-subdomains SECURE_HSTS_INCLUDE_SUBDOMAINS = env.bool( "DJANGO_SECURE_HSTS_INCLUDE_SUBDOMAINS", default=True ) # https://docs.djangoproject.com/en/dev/ref/settings/#secure-hsts-preload SECURE_HSTS_PRELOAD = env.bool("DJANGO_SECURE_HSTS_PRELOAD", default=True) # https://docs.djangoproject.com/en/dev/ref/middleware/#x-content-type-options-nosniff SECURE_CONTENT_TYPE_NOSNIFF = env.bool( "DJANGO_SECURE_CONTENT_TYPE_NOSNIFF", default=True ) # STORAGES # ------------------------------------------------------------------------------ # https://django-storages.readthedocs.io/en/latest/#installation INSTALLED_APPS += ["storages"] # noqa F405 # https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html#settings AWS_ACCESS_KEY_ID = env("DJANGO_AWS_ACCESS_KEY_ID") # https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html#settings AWS_SECRET_ACCESS_KEY = env("DJANGO_AWS_SECRET_ACCESS_KEY") # https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html#settings AWS_STORAGE_BUCKET_NAME = env("DJANGO_AWS_STORAGE_BUCKET_NAME") # https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html#settings AWS_QUERYSTRING_AUTH = False # DO NOT change these unless you know what you're doing. _AWS_EXPIRY = 60 * 60 * 24 * 7 # https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html#settings AWS_S3_OBJECT_PARAMETERS = { "CacheControl": f"max-age={_AWS_EXPIRY}, s-maxage={_AWS_EXPIRY}, must-revalidate" } # https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html#settings AWS_DEFAULT_ACL = None # STATIC # ------------------------ STATICFILES_STORAGE = "config.settings.production.StaticRootS3Boto3Storage" STATIC_URL = f"https://{AWS_STORAGE_BUCKET_NAME}.s3.amazonaws.com/static/" # MEDIA # ------------------------------------------------------------------------------ # region http://stackoverflow.com/questions/10390244/ # Full-fledge class: https://stackoverflow.com/a/18046120/104731 from storages.backends.s3boto3 import S3Boto3Storage # noqa E402 class StaticRootS3Boto3Storage(S3Boto3Storage): location = "static" class MediaRootS3Boto3Storage(S3Boto3Storage): location = "media" file_overwrite = False # endregion DEFAULT_FILE_STORAGE = "config.settings.production.MediaRootS3Boto3Storage" MEDIA_URL = f"https://{AWS_STORAGE_BUCKET_NAME}.s3.amazonaws.com/media/" # TEMPLATES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES[0]["OPTIONS"]["loaders"] = [ # noqa F405 ( "django.template.loaders.cached.Loader", [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ], ) ] # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#default-from-email DEFAULT_FROM_EMAIL = env( "DJANGO_DEFAULT_FROM_EMAIL", default="HansBerger <noreply@example.com>" ) # https://docs.djangoproject.com/en/dev/ref/settings/#server-email SERVER_EMAIL = env("DJANGO_SERVER_EMAIL", default=DEFAULT_FROM_EMAIL) # https://docs.djangoproject.com/en/dev/ref/settings/#email-subject-prefix EMAIL_SUBJECT_PREFIX = env( "DJANGO_EMAIL_SUBJECT_PREFIX", default="[HansBerger]" ) # ADMIN # ------------------------------------------------------------------------------ # Django Admin URL regex. ADMIN_URL = env("DJANGO_ADMIN_URL") # Anymail (Mailgun) # ------------------------------------------------------------------------------ # https://anymail.readthedocs.io/en/stable/installation/#installing-anymail INSTALLED_APPS += ["anymail"] # noqa F405 EMAIL_BACKEND = "anymail.backends.mailgun.EmailBackend" # https://anymail.readthedocs.io/en/stable/installation/#anymail-settings-reference ANYMAIL = { "MAILGUN_API_KEY": env("MAILGUN_API_KEY"), "MAILGUN_SENDER_DOMAIN": env("MAILGUN_DOMAIN"), } # Gunicorn # ------------------------------------------------------------------------------ INSTALLED_APPS += ["gunicorn"] # noqa F405 # Collectfast # ------------------------------------------------------------------------------ # https://github.com/antonagestam/collectfast#installation INSTALLED_APPS = ["collectfast"] + INSTALLED_APPS # noqa F405 AWS_PRELOAD_METADATA = True # LOGGING # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#logging # See https://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. LOGGING = { "version": 1, "disable_existing_loggers": False, "filters": {"require_debug_false": {"()": "django.utils.log.RequireDebugFalse"}}, "formatters": { "verbose": { "format": "%(levelname)s %(asctime)s %(module)s " "%(process)d %(thread)d %(message)s" } }, "handlers": { "mail_admins": { "level": "ERROR", "filters": ["require_debug_false"], "class": "django.utils.log.AdminEmailHandler", }, "console": { "level": "DEBUG", "class": "logging.StreamHandler", "formatter": "verbose", }, }, "loggers": { "django.request": { "handlers": ["mail_admins"], "level": "ERROR", "propagate": True, }, "django.security.DisallowedHost": { "level": "ERROR", "handlers": ["console", "mail_admins"], "propagate": True, }, }, } # Your stuff... # ------------------------------------------------------------------------------
[]
[]
[]
archives/097475_hansberger.zip
config/settings/test.py
""" With these settings, tests run faster. """ from .base import * # noqa from .base import env # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = False # https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = env( "DJANGO_SECRET_KEY", default="erUDbhof0rcYmmw3H8Xirg44hVgOGPbiHpqtggEXotfG3NvWWXRK0CGCQsda0byV", ) # https://docs.djangoproject.com/en/dev/ref/settings/#test-runner TEST_RUNNER = "django.test.runner.DiscoverRunner" # CACHES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#caches CACHES = { "default": { "BACKEND": "django.core.cache.backends.locmem.LocMemCache", "LOCATION": "", } } # PASSWORDS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#password-hashers PASSWORD_HASHERS = ["django.contrib.auth.hashers.MD5PasswordHasher"] # TEMPLATES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES[0]["OPTIONS"]["debug"] = DEBUG # noqa F405 TEMPLATES[0]["OPTIONS"]["loaders"] = [ # noqa F405 ( "django.template.loaders.cached.Loader", [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ], ) ] # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = "django.core.mail.backends.locmem.EmailBackend" # https://docs.djangoproject.com/en/dev/ref/settings/#email-host EMAIL_HOST = "localhost" # https://docs.djangoproject.com/en/dev/ref/settings/#email-port EMAIL_PORT = 1025 # Your stuff... # ------------------------------------------------------------------------------
[]
[]
[]
archives/097475_hansberger.zip
config/urls.py
from django.conf import settings from django.urls import include, path from django.conf.urls.static import static from django.contrib import admin from django.views.generic import TemplateView from django.views import defaults as default_views urlpatterns = [ path("", TemplateView.as_view(template_name="pages/home.html"), name="home"), path( "about/", TemplateView.as_view(template_name="pages/about.html"), name="about" ), path("contact/", TemplateView.as_view(template_name="pages/contact.html"), name="contact"), # Django Admin, use {% url 'admin:index' %} path(settings.ADMIN_URL, admin.site.urls), # User management path("users/", include("hansberger.users.urls", namespace="users")), path("accounts/", include("allauth.urls")), # Your stuff: custom urls includes go here path("research/", include("research.urls")), path("research/<slug:research_slug>/datasets/", include("datasets.urls")), path("research/<slug:research_slug>/analysis/", include("analysis.urls")) ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) if settings.DEBUG: # This allows the error pages to be debugged during development, just visit # these url in browser to see how these error pages look like. urlpatterns += [ path( "400/", default_views.bad_request, kwargs={"exception": Exception("Bad Request!")}, ), path( "403/", default_views.permission_denied, kwargs={"exception": Exception("Permission Denied")}, ), path( "404/", default_views.page_not_found, kwargs={"exception": Exception("Page not Found")}, ), path("500/", default_views.server_error), ] if "debug_toolbar" in settings.INSTALLED_APPS: import debug_toolbar urlpatterns = [path("__debug__/", include(debug_toolbar.urls))] + urlpatterns
[]
[]
[]
archives/097475_hansberger.zip
config/wsgi.py
""" WSGI config for HansBerger project. This module contains the WSGI application used by Django's development server and any production WSGI deployments. It should expose a module-level variable named ``application``. Django's ``runserver`` and ``runfcgi`` commands discover this application via the ``WSGI_APPLICATION`` setting. Usually you will have the standard Django WSGI application here, but it also might make sense to replace the whole Django WSGI application with a custom one that later delegates to the Django one. For example, you could introduce WSGI middleware here, or combine a Django application with an application of another framework. """ import os import sys from django.core.wsgi import get_wsgi_application # This allows easy placement of apps within the interior # hansberger directory. app_path = os.path.abspath( os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir) ) sys.path.append(os.path.join(app_path, "hansberger")) # We defer to a DJANGO_SETTINGS_MODULE already in the environment. This breaks # if running multiple sites in the same mod_wsgi process. To fix this, use # mod_wsgi daemon mode with each site in its own daemon process, or use # os.environ["DJANGO_SETTINGS_MODULE"] = "config.settings.production" os.environ.setdefault("DJANGO_SETTINGS_MODULE", "config.settings.production") # This application object is used by any WSGI server configured to use this # file. This includes Django's development server, if the WSGI_APPLICATION # setting points here. application = get_wsgi_application() # Apply WSGI middleware here. # from helloworld.wsgi import HelloWorldApplication # application = HelloWorldApplication(application)
[]
[]
[]
archives/097475_hansberger.zip
docs/__init__.py
# Included so that Django's startproject comment runs against the docs directory
[]
[]
[]
archives/097475_hansberger.zip
docs/conf.py
# HansBerger documentation build configuration file, created by # sphinx-quickstart. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix of source filenames. source_suffix = ".rst" # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = "index" # General information about the project. project = "HansBerger" copyright = """2019, Matteo Belenchia and Sebastiano Verdolini""" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = "0.1" # The full version, including alpha/beta/rc tags. release = "0.1" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build"] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "default" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = "hansbergerdoc" # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ( "index", "hansberger.tex", "HansBerger Documentation", """Matteo Belenchia and Sebastiano Verdolini""", "manual", ) ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ( "index", "hansberger", "HansBerger Documentation", ["""Matteo Belenchia and Sebastiano Verdolini"""], 1, ) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( "index", "hansberger", "HansBerger Documentation", """Matteo Belenchia and Sebastiano Verdolini""", "HansBerger", """Web application for topological analysis""", "Miscellaneous", ) ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
[]
[]
[]
archives/097475_hansberger.zip
hansberger/__init__.py
__version__ = "0.1.0" __version_info__ = tuple( [ int(num) if num.isdigit() else num for num in __version__.replace("-", ".", 1).split(".") ] )
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/__init__.py
default_app_config = 'analysis.apps.AnalysisConfig'
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/admin.py
from django.contrib import admin # Register your models here. from .models import FiltrationAnalysis, MapperAnalysis admin.site.register(FiltrationAnalysis) admin.site.register(MapperAnalysis)
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/apps.py
from django.apps import AppConfig class AnalysisConfig(AppConfig): name = 'analysis' def ready(self): import analysis.signals # noqa
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/consumers.py
from channels.generic.websocket import WebsocketConsumer import json class Singleton(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[cls] def analysis_logger_decorator(func): def wrapper(instance, *args, **kwargs): status_logger = StatusHolder() status_logger.set_limit(instance.get_expected_window_number()) func(instance, *args, **kwargs) status_logger.reset() return wrapper def bottleneck_logger_decorator(func): def wrapper(instance, *args, **kwargs): status_logger = StatusHolder() if instance.window is not None: count = instance.window.get_window_number() else: count = instance.analysis.get_window_number() status_logger.set_limit(count) func(instance, *args, **kwargs) status_logger.reset() return wrapper class StatusHolder(metaclass=Singleton): def __init__(self): self.reset() def set_status(self, value): self.status = value def set_limit(self, value): self.limit = value def get_status(self): return self.status def get_limit(self): return self.limit def reset(self): self.status = 0 self.limit = 0 self.kill = False def set_kill(self): self.kill = True def get_kill(self): return self.kill class AnalysisConsumer(WebsocketConsumer): def connect(self): self.accept() self.status_logger = StatusHolder() def disconnect(self, close_code): pass def receive(self, text_data): text_data_json = json.loads(text_data) message = text_data_json['signal'] if message == 'status': self.send(text_data=json.dumps({ 'status': self.status_logger.get_status(), 'limit': self.status_logger.get_limit() })) elif message == 'kill': self.status_logger.set_kill()
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/forms.py
from django import forms from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout, Fieldset, Field, Div from django.urls import reverse_lazy from .models import FiltrationAnalysis, MapperAnalysis, Bottleneck from datasets.models import Dataset, DatasetKindChoice def analysis_name_unique_check(name, research): return bool((FiltrationAnalysis.objects.filter( research__slug=research.slug, name=name ).first() or MapperAnalysis.objects.filter( research__slug=research.slug, name=name ).first())) class SourceChoiceForm(forms.Form): ANALYSIS_OPTIONS = [('filtration_analysis', "Filtration Analysis with ripser"), ('mapper_analysis', "Mapper Analysis with KeplerMapper")] SOURCE_OPTIONS = [('dataset', 'Dataset'), ('precomputed', 'Precomputed distance matrices')] analysis = forms.ChoiceField(widget=forms.RadioSelect, choices=ANALYSIS_OPTIONS) source = forms.ChoiceField(widget=forms.RadioSelect, choices=SOURCE_OPTIONS) class DatasetAnalysisCreationForm(forms.ModelForm): def window_overlap_checks(self, window_size, window_overlap, dataset): if dataset.kind == DatasetKindChoice.EDF.value: dataset = dataset.edfdataset elif dataset.kind == DatasetKindChoice.TEXT.value: dataset = dataset.textdataset if window_size == 0: self.add_error("window_size", "Window size can't be equal to 0") raise forms.ValidationError("Window size can't be equal to 0") if window_size > len(dataset.get_matrix_data()[0]): self.add_error("window_size", "Window size can't be greater than the number of columns in the dataset") raise forms.ValidationError("Window size can't be greater than the number of columns in the dataset") if window_overlap >= window_size: self.add_error("window_overlap", "Window overlap can't be greater than or equal to window size") raise forms.ValidationError("Window overlap can't be greater than or equal to window size") class PrecomputedAnalysisCreationForm(forms.ModelForm): precomputed_distance_matrix = forms.FileField(required=False) class FiltrationAnalysisCreationForm_Dataset(DatasetAnalysisCreationForm): def __init__(self, research, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['research'].initial = research self.fields['dataset'].queryset = Dataset.objects.filter(research__slug=research.slug) self.fields['dataset'].required = True self.helper = FormHelper(self) self.helper.form_method = 'POST' self.helper.form_action = reverse_lazy('analysis:filtrationanalysis-create', kwargs={ 'form': 'dataset', 'research_slug': research.slug}) self.helper.form_id = "analysis_form" self.helper.layout = Layout( 'name', 'description', Field('research', type="hidden"), 'dataset', Div(id='peek_dataset'), 'window_size', 'window_overlap', 'filtration_type', 'distance_matrix_metric', Fieldset( 'Ripser arguments', 'max_homology_dimension', 'max_distances_considered', 'coeff', 'do_cocycles', 'n_perm' ) ) def clean(self): cleaned_data = super().clean() dataset = cleaned_data.get("dataset") filtration_type = cleaned_data.get("filtration_type") distance_matrix_metric = cleaned_data.get("distance_matrix_metric") window_overlap = cleaned_data.get("window_overlap") window_size = cleaned_data.get("window_size") name = cleaned_data.get("name") research = cleaned_data.get("research") if analysis_name_unique_check(name, research): self.add_error("name", "An analysis with this name already exists.") raise forms.ValidationError("An analysis with this name already exists.") if window_size is not None: self.window_overlap_checks(window_size, window_overlap, dataset) if filtration_type == FiltrationAnalysis.VIETORIS_RIPS_FILTRATION and distance_matrix_metric == '': raise forms.ValidationError("You must provide a distance matrix metric for a Vietoris-Rips Filtration") self.add_error("distance_matrix_metric", "You must provide a distance matrix metric for a Vietoris-Rips Filtration") class Meta: model = FiltrationAnalysis exclude = ['slug', 'precomputed_distance_matrix', 'precomputed_distance_matrix_json', 'entropy_normalized_graph', 'entropy_unnormalized_graph'] class FiltrationAnalysisCreationForm_Precomputed(PrecomputedAnalysisCreationForm): def __init__(self, research, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['research'].initial = research self.helper = FormHelper(self) self.helper.form_method = 'POST' self.helper.form_action = reverse_lazy('analysis:filtrationanalysis-create', kwargs={ 'form': 'precomputed', 'research_slug': research.slug}) self.helper.form_id = "analysis_form" self.helper.layout = Layout( 'name', 'description', Field('research', type="hidden"), Field('precomputed_distance_matrix', multiple=True), Field('precomputed_distance_matrix_json', type="hidden"), Fieldset( 'Ripser arguments', 'max_homology_dimension', 'max_distances_considered', 'coeff', 'do_cocycles', 'n_perm' ) ) def clean(self): cleaned_data = super().clean() precomputed_distance_matrix = cleaned_data.get("precomputed_distance_matrix") name = cleaned_data.get("name") research = cleaned_data.get("research") if analysis_name_unique_check(name, research): self.add_error("name", "An analysis with this name already exists.") raise forms.ValidationError("An analysis with this name already exists.") if not precomputed_distance_matrix: self.add_error("precomputed_distance_matrix", "You must provide a precomputed distance matrix") raise forms.ValidationError("You must provide a precomputed distance matrix") class Meta: model = FiltrationAnalysis exclude = ['slug', 'dataset', 'window_size', 'window_overlap', 'filtration_type', 'distance_matrix_metric', 'entropy_normalized_graph', 'entropy_unnormalized_graph'] class MapperAnalysisCreationForm_Dataset(DatasetAnalysisCreationForm): def __init__(self, research, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['research'].initial = research self.fields['dataset'].queryset = Dataset.objects.filter(research__slug=research.slug) self.fields['dataset'].required = True self.helper = FormHelper(self) self.helper.form_method = 'POST' self.helper.form_action = reverse_lazy('analysis:mapperanalysis-create', kwargs={ 'form': 'dataset', 'research_slug': research.slug}) self.helper.form_id = "analysis_form" self.helper.layout = Layout( 'name', 'description', Field('research', type="hidden"), 'dataset', Div(id='peek_dataset'), 'window_size', 'window_overlap', 'distance_matrix_metric', Fieldset( 'fit_transform parameters', 'projection', 'knn_n_value', 'scaler', ), Fieldset( 'map parameters', 'use_original_data', 'clusterer', 'cover_n_cubes', 'cover_perc_overlap', 'graph_nerve_min_intersection', 'precomputed', 'remove_duplicate_nodes' ) ) def clean(self): cleaned_data = super().clean() dataset = cleaned_data.get("dataset") window_overlap = cleaned_data.get("window_overlap") window_size = cleaned_data.get("window_size") name = cleaned_data.get("name") research = cleaned_data.get("research") projection = cleaned_data.get("projection") knn_n_value = cleaned_data.get("knn_n_value") distance_matrix_metric = cleaned_data.get("distance_matrix_metric") if analysis_name_unique_check(name, research): self.add_error("name", "An analysis with this name already exists.") raise forms.ValidationError("An analysis with this name already exists.") if window_size is not None: self.window_overlap_checks(window_size, window_overlap, dataset) if distance_matrix_metric == '': self.add_error('distance_matrix_metric', 'Field required') if projection == 'knn_distance_n' and not knn_n_value: self.add_error("projection", "You must provide a value for n in knn_distance_n") raise forms.ValidationError("You must provide a value for n in knn_distance_n") class Meta: model = MapperAnalysis exclude = ['slug', 'graph', 'precomputed_distance_matrix', 'precomputed_distance_matrix_json'] class MapperAnalysisCreationForm_Precomputed(PrecomputedAnalysisCreationForm): def __init__(self, research, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['research'].initial = research self.helper = FormHelper(self) self.helper.form_method = 'POST' self.helper.form_action = reverse_lazy('analysis:mapperanalysis-create', kwargs={ 'form': 'precomputed', 'research_slug': research.slug}) self.helper.form_id = "analysis_form" self.helper.layout = Layout( 'name', 'description', Field('research', type="hidden"), Field('precomputed_distance_matrix', multiple=True), Field('precomputed_distance_matrix_json', type="hidden"), Fieldset( 'fit_transform parameters', 'projection', 'knn_n_value', 'scaler', ), Fieldset( 'map parameters', 'use_original_data', 'clusterer', 'cover_n_cubes', 'cover_perc_overlap', 'graph_nerve_min_intersection', 'precomputed', 'remove_duplicate_nodes' ) ) def clean(self): cleaned_data = super().clean() precomputed_distance_matrix = cleaned_data.get("precomputed_distance_matrix") name = cleaned_data.get("name") research = cleaned_data.get("research") projection = cleaned_data.get("projection") knn_n_value = cleaned_data.get("knn_n_value") if analysis_name_unique_check(name, research): self.add_error("name", "An analysis with this name already exists.") raise forms.ValidationError("An analysis with this name already exists.") if not precomputed_distance_matrix: self.add_error("precomputed_distance_matrix", "You must provide a precomputed distance matrix") raise forms.ValidationError("You must provide a precomputed distance matrix") if projection == 'knn_distance_n' and not knn_n_value: self.add_error("projection", "You must provide a value for n in knn_distance_n") raise forms.ValidationError("You must provide a value for n in knn_distance_n") class Meta: model = MapperAnalysis exclude = ['slug', 'graph', 'window_size', 'window_overlap', 'filtration_type', 'distance_matrix_metric'] class AnalysisBottleneckCreationForm(forms.Form): BOTTLENECK_OPTIONS = [(Bottleneck.CONS, 'Bottleneck of consecutive windows'), (Bottleneck.ALL, 'Bottleneck of each window to each window')] bottleneck_type = forms.ChoiceField(widget=forms.RadioSelect, choices=BOTTLENECK_OPTIONS) homology = forms.ChoiceField(widget=forms.RadioSelect) def __init__(self, _homology, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['homology'].choices = [(i, i) for i in range(_homology+1)] class WindowBottleneckCreationForm(forms.Form): homology = forms.ChoiceField(widget=forms.RadioSelect) def __init__(self, _homology, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['homology'].choices = [(i, i) for i in range(_homology+1)]
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/migrations/0001_initial.py
# Generated by Django 2.0.13 on 2019-06-27 17:04 import django.contrib.postgres.fields.jsonb from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('research', '0001_initial'), ('datasets', '0001_initial'), ] operations = [ migrations.CreateModel( name='Bottleneck', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('homology', models.PositiveIntegerField()), ('kind', models.CharField(choices=[('consecutive', 'consecutive'), ('one_to_all', 'one_to_all'), ('all_to_all', 'all_to_all')], max_length=20)), ], ), migrations.CreateModel( name='Diagram', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.TextField()), ('bottleneck_distance', models.FloatField()), ('bottleneck', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='analysis.Bottleneck')), ], ), migrations.CreateModel( name='FiltrationAnalysis', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(help_text='Name this analysis', max_length=100)), ('slug', models.SlugField(max_length=110)), ('description', models.TextField(blank=True, help_text='Write a brief description of the analysis', max_length=500)), ('creation_date', models.DateTimeField(auto_now_add=True)), ('precomputed_distance_matrix_json', django.contrib.postgres.fields.jsonb.JSONField(default='"[]"')), ('window_size', models.PositiveIntegerField(blank=True, default=None, help_text="Leave window size blank to not use windows. Window parameter\n is ignored when dealing with precomputed distance matrix. Always check\n the dimensions of the dataset your are operating on and plan your windows\n accordingly; eventual data that won't fit into the final window will be\n discarded.", null=True)), ('window_overlap', models.PositiveIntegerField(default=0, help_text='How many columns of overlap to have in\n consequent windows, if windows are being used. It must be at most 1\n less than window size.')), ('filtration_type', models.CharField(choices=[('VRF', 'Vietoris Rips Filtration'), ('CWRF', 'Clique Weighted Rank Filtration')], help_text='Choose the type of analysis.', max_length=50)), ('distance_matrix_metric', models.CharField(blank=True, choices=[('braycurtis', 'Braycurtis'), ('canberra', 'Canberra'), ('chebyshev', 'Chebyshev'), ('cityblock', 'City block'), ('correlation', 'Correlation'), ('cosine', 'Cosine'), ('dice', 'Dice'), ('euclidean', 'Euclidean'), ('hamming', 'Hamming'), ('jaccard', 'Jaccard'), ('jensenshannon', 'Jensen Shannon'), ('kulsinski', 'Kulsinski'), ('mahalanobis', 'Mahalonobis'), ('matching', 'Matching'), ('minkowski', 'Minkowski'), ('rogerstanimoto', 'Rogers-Tanimoto'), ('russellrao', 'Russel Rao'), ('seuclidean', 'Seuclidean'), ('sokalmichener', 'Sojal-Michener'), ('sokalsneath', 'Sokal-Sneath'), ('sqeuclidean', 'Sqeuclidean'), ('yule', 'Yule')], help_text='If Vietoris-Rips filtration is selected and not using a precomputed distance matrix, choose the\n distance metric to use on the selected dataset. This parameter is ignored in all other cases.', max_length=20)), ('max_homology_dimension', models.PositiveIntegerField(default=1, help_text='Maximum homology dimension computed. Will compute all dimensions lower than and equal to this value.\n For 1, H_0 and H_1 will be computed.')), ('max_distances_considered', models.FloatField(blank=True, default=None, help_text='Maximum distances considered when constructing filtration.\n If blank, compute the entire filtration.', null=True)), ('coeff', models.PositiveIntegerField(default=2, help_text='Compute homology with coefficients in the prime field Z/pZ for\n p=coeff.')), ('do_cocycles', models.BooleanField(default=False, help_text='Indicator of whether to compute cocycles.')), ('n_perm', models.IntegerField(blank=True, default=None, help_text='The number of points to subsample in\n a “greedy permutation,” or a furthest point sampling of the points. These points will\n be used in lieu of the full point cloud for a faster computation, at the expense of\n some accuracy, which can be bounded as a maximum bottleneck distance to all diagrams\n on the original point set', null=True)), ('entropy_normalized_graph', models.TextField(blank=True, null=True)), ('entropy_unnormalized_graph', models.TextField(blank=True, null=True)), ('dataset', models.ForeignKey(blank=True, default=None, help_text='Select the source dataset from the loaded datasets', null=True, on_delete=django.db.models.deletion.CASCADE, to='datasets.Dataset')), ('research', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='research.Research')), ], options={ 'verbose_name': 'filtration analysis', 'verbose_name_plural': 'filtration analyses', 'abstract': False, }, ), migrations.CreateModel( name='FiltrationWindow', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.PositiveIntegerField()), ('slug', models.SlugField(max_length=150)), ('creation_date', models.DateTimeField(auto_now_add=True)), ('start', models.PositiveIntegerField(blank=True, null=True)), ('end', models.PositiveIntegerField(blank=True, null=True)), ('result_matrix', django.contrib.postgres.fields.jsonb.JSONField(blank=True, null=True)), ('diagrams', django.contrib.postgres.fields.jsonb.JSONField(blank=True, null=True)), ('result_entropy_normalized', django.contrib.postgres.fields.jsonb.JSONField(blank=True, null=True)), ('result_entropy_unnormalized', django.contrib.postgres.fields.jsonb.JSONField(blank=True, null=True)), ('analysis', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='analysis.FiltrationAnalysis')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='MapperAnalysis', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(help_text='Name this analysis', max_length=100)), ('slug', models.SlugField(max_length=110)), ('description', models.TextField(blank=True, help_text='Write a brief description of the analysis', max_length=500)), ('creation_date', models.DateTimeField(auto_now_add=True)), ('precomputed_distance_matrix_json', django.contrib.postgres.fields.jsonb.JSONField(default='"[]"')), ('window_size', models.PositiveIntegerField(blank=True, default=None, help_text="Leave window size blank to not use windows. Window parameter\n is ignored when dealing with precomputed distance matrix. Always check\n the dimensions of the dataset your are operating on and plan your windows\n accordingly; eventual data that won't fit into the final window will be\n discarded.", null=True)), ('window_overlap', models.PositiveIntegerField(default=0, help_text='How many columns of overlap to have in\n consequent windows, if windows are being used. It must be at most 1\n less than window size.')), ('distance_matrix_metric', models.CharField(blank=True, choices=[('braycurtis', 'Braycurtis'), ('canberra', 'Canberra'), ('chebyshev', 'Chebyshev'), ('cityblock', 'City block'), ('correlation', 'Correlation'), ('cosine', 'Cosine'), ('dice', 'Dice'), ('euclidean', 'Euclidean'), ('hamming', 'Hamming'), ('jaccard', 'Jaccard'), ('jensenshannon', 'Jensen Shannon'), ('kulsinski', 'Kulsinski'), ('mahalanobis', 'Mahalonobis'), ('matching', 'Matching'), ('minkowski', 'Minkowski'), ('rogerstanimoto', 'Rogers-Tanimoto'), ('russellrao', 'Russel Rao'), ('seuclidean', 'Seuclidean'), ('sokalmichener', 'Sojal-Michener'), ('sokalsneath', 'Sokal-Sneath'), ('sqeuclidean', 'Sqeuclidean'), ('yule', 'Yule')], help_text='If not using a precomputed matrix, choose the distance metric to use on the dataset.', max_length=20)), ('projection', models.CharField(choices=[('sum', 'Sum'), ('mean', 'Mean'), ('median', 'Median'), ('max', 'Max'), ('min', 'Min'), ('std', 'Std'), ('dist_mean', 'Dist_mean'), ('l2norm', 'L2norm'), ('knn_distance_n', 'knn_distance_n')], default='sum', help_text='Specify a projection/lens type.', max_length=50)), ('knn_n_value', models.PositiveIntegerField(blank=True, help_text='Specify the value of n in knn_distance_n', null=True)), ('scaler', models.CharField(choices=[('None', 'None'), ('MinMaxScaler', 'MinMaxScaler'), ('MaxAbsScaler', 'MaxAbsScaler'), ('RobustScaler', 'RobustScaler'), ('StandardScaler', 'StandardScaler')], default='MinMaxScaler', help_text='Scaler of the data applied after mapping. Use None for no scaling.', max_length=50)), ('use_original_data', models.BooleanField(default=False, help_text='If ticked, clustering is run on the original data,\n else it will be run on the lower dimensional projection.')), ('clusterer', models.CharField(choices=[('k-means', 'K-Means'), ('affinity_propagation', 'Affinity propagation'), ('mean-shift', 'Mean-shift'), ('spectral_clustering', 'Spectral clustering'), ('agglomerative_clustering', 'StandardScaler'), ('DBSCAN(min_samples=1)', 'DBSCAN(min_samples=1)'), ('DBSCAN', 'DBSCAN'), ('gaussian_mixtures', 'Gaussian mixtures'), ('birch', 'Birch')], default='DBSCAN', help_text='Select the clustering algorithm.', max_length=50)), ('cover_n_cubes', models.PositiveIntegerField(default=10, help_text='Number of hypercubes along each dimension.\n Sometimes referred to as resolution.')), ('cover_perc_overlap', models.FloatField(default=0.5, help_text='Amount of overlap between adjacent cubes calculated\n only along 1 dimension.')), ('graph_nerve_min_intersection', models.IntegerField(default=1, help_text='Minimum intersection considered when\n computing the nerve. An edge will be created only when the\n intersection between two nodes is greater than or equal to\n min_intersection')), ('precomputed', models.BooleanField(default=False, help_text='Tell Mapper whether the data that you are clustering on\n is a precomputed distance matrix. If set to True, the assumption is that you are\n also telling your clusterer that metric=’precomputed’ (which is an argument for\n DBSCAN among others), which will then cause the clusterer to expect a square\n distance matrix for each hypercube. precomputed=True will give a square matrix\n to the clusterer to fit on for each hypercube.')), ('remove_duplicate_nodes', models.BooleanField(default=False, help_text='Removes duplicate nodes before edges are\n determined. A node is considered to be duplicate if it has exactly\n the same set of points as another node.')), ('dataset', models.ForeignKey(blank=True, default=None, help_text='Select the source dataset from the loaded datasets', null=True, on_delete=django.db.models.deletion.CASCADE, to='datasets.Dataset')), ('research', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='research.Research')), ], options={ 'verbose_name': 'mapper algorithm analysis', 'verbose_name_plural': 'mapper algoritm analyses', 'abstract': False, }, ), migrations.CreateModel( name='MapperWindow', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.PositiveIntegerField()), ('slug', models.SlugField(max_length=150)), ('creation_date', models.DateTimeField(auto_now_add=True)), ('start', models.PositiveIntegerField(blank=True, null=True)), ('end', models.PositiveIntegerField(blank=True, null=True)), ('graph', models.TextField(blank=True, null=True)), ('analysis', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='windows', related_query_name='window', to='analysis.MapperAnalysis')), ], options={ 'abstract': False, }, ), migrations.AddField( model_name='diagram', name='window1', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='window1', to='analysis.FiltrationWindow'), ), migrations.AddField( model_name='diagram', name='window2', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='window2', to='analysis.FiltrationWindow'), ), migrations.AddField( model_name='bottleneck', name='analysis', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='analysis.FiltrationAnalysis'), ), migrations.AddField( model_name='bottleneck', name='window', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='analysis.FiltrationWindow'), ), migrations.AlterUniqueTogether( name='mapperanalysis', unique_together={('slug', 'research')}, ), migrations.AlterUniqueTogether( name='filtrationanalysis', unique_together={('slug', 'research')}, ), ]
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/migrations/0002_auto_20190628_1222.py
# Generated by Django 2.0.13 on 2019-06-28 10:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('analysis', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='filtrationwindow', name='diagrams', ), migrations.AddField( model_name='filtrationwindow', name='diagram', field=models.TextField(blank=True, null=True), ), ]
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/migrations/__init__.py
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/models/__init__.py
from .analysis import Analysis, MapperAnalysis, FiltrationAnalysis # noqa from .window import Window, MapperWindow, FiltrationWindow # noqa from .bottleneck import Bottleneck, Diagram # noqa
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/models/analysis.py
import math import json import gc import matplotlib import matplotlib.pyplot as plt import mpld3 import pandas from django.db import models from django.utils.text import slugify from django.contrib.postgres.fields import JSONField import ripser import kmapper import sklearn.cluster import sklearn.preprocessing import sklearn.mixture import numpy from research.models import Research from datasets.models import Dataset, DatasetKindChoice from datasets.models.dataset import distance_matrix, correlation_matrix from .window import FiltrationWindow, MapperWindow, window_batch_generator from .bottleneck import Bottleneck from ..consumers import StatusHolder, analysis_logger_decorator matplotlib.use('Agg') class Analysis(models.Model): def precomputed_directory_path(instance, filename): # file will be uploaded to MEDIA_ROOT/user_<id>/<filename> return 'research/precomputed/'+instance.slug+'/'+filename METRIC_CHOICES = ( ('braycurtis', 'Braycurtis'), ('canberra', 'Canberra'), ('chebyshev', 'Chebyshev'), ('cityblock', 'City block'), ('correlation', 'Correlation'), ('cosine', 'Cosine'), ('dice', 'Dice'), ('euclidean', 'Euclidean'), ('hamming', 'Hamming'), ('jaccard', 'Jaccard'), ('jensenshannon', 'Jensen Shannon'), ('kulsinski', 'Kulsinski'), ('mahalanobis', 'Mahalonobis'), ('matching', 'Matching'), ('minkowski', 'Minkowski'), ('rogerstanimoto', 'Rogers-Tanimoto'), ('russellrao', 'Russel Rao'), ('seuclidean', 'Seuclidean'), ('sokalmichener', 'Sojal-Michener'), ('sokalsneath', 'Sokal-Sneath'), ('sqeuclidean', 'Sqeuclidean'), ('yule', 'Yule'), ) name = models.CharField(max_length=100, help_text="Name this analysis") slug = models.SlugField(db_index=True, max_length=110) description = models.TextField(max_length=500, blank=True, help_text="Write a brief description of the analysis") creation_date = models.DateTimeField(auto_now_add=True) research = models.ForeignKey( Research, on_delete=models.CASCADE ) dataset = models.ForeignKey( Dataset, on_delete=models.CASCADE, help_text="Select the source dataset from the loaded datasets", default=None, blank=True, null=True ) precomputed_distance_matrix_json = JSONField(default=json.dumps('[]')) window_size = models.PositiveIntegerField(default=None, null=True, blank=True, help_text="""Leave window size blank to not use windows. Window parameter is ignored when dealing with precomputed distance matrix. Always check the dimensions of the dataset your are operating on and plan your windows accordingly; eventual data that won't fit into the final window will be discarded.""") window_overlap = models.PositiveIntegerField(default=0, help_text="""How many columns of overlap to have in consequent windows, if windows are being used. It must be at most 1 less than window size.""") def get_type(self): return self._meta.verbose_name def get_expected_window_number(self): precomputed_distance_matrixes = json.loads(self.precomputed_distance_matrix_json) if precomputed_distance_matrixes != []: return len(precomputed_distance_matrixes) elif self.window_size is not None: matrix = self.dataset.get_matrix_data() cols = len(matrix[0]) step = self.window_size - self.window_overlap return 1 + (cols - self.window_size) // step else: return 1 class Meta: abstract = True unique_together = (('slug', 'research')) def __str__(self): return self.name def save(self, *args, **kwargs): if not self.id: self.slug = slugify(self.name) if self.dataset: if self.dataset.kind == DatasetKindChoice.EDF.value: self.dataset = self.dataset.edfdataset elif self.dataset.kind == DatasetKindChoice.TEXT.value: self.dataset = self.dataset.textdataset super().save(*args, **kwargs) class MapperAnalysis(Analysis): scalers = { 'None': None, 'MinMaxScaler': sklearn.preprocessing.MinMaxScaler(), 'MaxAbsScaler': sklearn.preprocessing.MaxAbsScaler(), 'RobustScaler': sklearn.preprocessing.RobustScaler(), 'StandardScaler': sklearn.preprocessing.StandardScaler() } clusterers = { 'k-means': sklearn.cluster.KMeans(), 'affinity_propagation': sklearn.cluster.AffinityPropagation(), 'mean-shift': sklearn.cluster.MeanShift(), 'spectral_clustering': sklearn.cluster.SpectralClustering(), 'agglomerative_clustering': sklearn.cluster.AgglomerativeClustering(), 'DBSCAN': sklearn.cluster.DBSCAN(min_samples=3), # should be 3 'DBSCAN(min_samples=1)': sklearn.cluster.DBSCAN(min_samples=1), # should be 3 'gaussian_mixtures': sklearn.mixture.GaussianMixture(), 'birch': sklearn.cluster.Birch() } PROJECTION_CHOICES = ( ('sum', 'Sum'), ('mean', 'Mean'), ('median', 'Median'), ('max', 'Max'), ('min', 'Min'), ('std', 'Std'), ('dist_mean', 'Dist_mean'), ('l2norm', 'L2norm'), ('knn_distance_n', 'knn_distance_n') ) SCALER_CHOICES = ( ('None', 'None'), ('MinMaxScaler', 'MinMaxScaler'), ('MaxAbsScaler', 'MaxAbsScaler'), ('RobustScaler', 'RobustScaler'), ('StandardScaler', 'StandardScaler'), ) CLUSTERER_CHOICES = ( ('k-means', 'K-Means'), ('affinity_propagation', 'Affinity propagation'), ('mean-shift', 'Mean-shift'), ('spectral_clustering', 'Spectral clustering'), ('agglomerative_clustering', 'StandardScaler'), ('DBSCAN(min_samples=1)', 'DBSCAN(min_samples=1)'), ('DBSCAN', 'DBSCAN'), ('gaussian_mixtures', 'Gaussian mixtures'), ('birch', 'Birch') ) distance_matrix_metric = models.CharField( max_length=20, choices=Analysis.METRIC_CHOICES, help_text="If not using a precomputed matrix, choose the distance metric to use on the dataset.", blank=True ) projection = models.CharField( max_length=50, choices=PROJECTION_CHOICES, help_text="Specify a projection/lens type.", default='sum' ) knn_n_value = models.PositiveIntegerField( help_text="Specify the value of n in knn_distance_n", blank=True, null=True ) scaler = models.CharField( max_length=50, choices=SCALER_CHOICES, help_text="Scaler of the data applied after mapping. Use None for no scaling.", default='MinMaxScaler' ) use_original_data = models.BooleanField(default=False, help_text="""If ticked, clustering is run on the original data, else it will be run on the lower dimensional projection.""") clusterer = models.CharField( max_length=50, choices=CLUSTERER_CHOICES, default='DBSCAN', help_text="Select the clustering algorithm." ) cover_n_cubes = models.PositiveIntegerField(default=10, help_text="""Number of hypercubes along each dimension. Sometimes referred to as resolution.""") cover_perc_overlap = models.FloatField(default=0.5, help_text="""Amount of overlap between adjacent cubes calculated only along 1 dimension.""") graph_nerve_min_intersection = models.IntegerField(default=1, help_text="""Minimum intersection considered when computing the nerve. An edge will be created only when the intersection between two nodes is greater than or equal to min_intersection""") precomputed = models.BooleanField(default=False, help_text="""Tell Mapper whether the data that you are clustering on is a precomputed distance matrix. If set to True, the assumption is that you are also telling your clusterer that metric=’precomputed’ (which is an argument for DBSCAN among others), which will then cause the clusterer to expect a square distance matrix for each hypercube. precomputed=True will give a square matrix to the clusterer to fit on for each hypercube.""") remove_duplicate_nodes = models.BooleanField(default=False, help_text="""Removes duplicate nodes before edges are determined. A node is considered to be duplicate if it has exactly the same set of points as another node.""") class Meta(Analysis.Meta): verbose_name = "mapper algorithm analysis" verbose_name_plural = "mapper algoritm analyses" def save(self, *args, **kwargs): super().save(*args, **kwargs) run_analysis(self) def execute(self, distance_matrix, original_matrix=None, number=0): mapper = kmapper.KeplerMapper() mycover = kmapper.Cover(n_cubes=self.cover_n_cubes, perc_overlap=self.cover_perc_overlap) mynerve = kmapper.GraphNerve(min_intersection=self.graph_nerve_min_intersection) original_data = original_matrix.transpose() if self.use_original_data else None projection = self.projection if self.projection != 'knn_distance_n' else 'knn_distance_' + str(self.knn_n_value) projected_data = mapper.fit_transform(distance_matrix, projection=projection, scaler=MapperAnalysis.scalers[self.scaler], distance_matrix=False) graph = mapper.map(projected_data, X=original_data, clusterer=MapperAnalysis.clusterers[self.clusterer], cover=mycover, nerve=mynerve, precomputed=self.precomputed, remove_duplicate_nodes=self.remove_duplicate_nodes) output_graph = mapper.visualize(graph, save_file=False) window = MapperWindow.objects.create_window(number, self) window.save_data(output_graph) def get_window_number(self): return MapperWindow.objects.filter(analysis=self).count() class FiltrationAnalysis(Analysis): VIETORIS_RIPS_FILTRATION = 'VRF' CLIQUE_WEIGHTED_RANK_FILTRATION = 'CWRF' FILTRATION_TYPE_CHOICES = ( (VIETORIS_RIPS_FILTRATION, 'Vietoris Rips Filtration'), (CLIQUE_WEIGHTED_RANK_FILTRATION, 'Clique Weight Rank Filtration'), ) filtration_type = models.CharField( max_length=50, choices=FILTRATION_TYPE_CHOICES, help_text="Choose the type of analysis." ) distance_matrix_metric = models.CharField( max_length=20, choices=Analysis.METRIC_CHOICES, blank=True, help_text="""If Vietoris-Rips filtration is selected and not using a precomputed distance matrix, choose the distance metric to use on the selected dataset. This parameter is ignored in all other cases.""" ) max_homology_dimension = models.PositiveIntegerField(default=1, help_text="""Maximum homology dimension computed. Will compute all dimensions lower than and equal to this value. For 1, H_0 and H_1 will be computed.""") max_distances_considered = models.FloatField(default=None, null=True, blank=True, help_text="""Maximum distances considered when constructing filtration. If blank, compute the entire filtration.""") coeff = models.PositiveIntegerField(default=2, help_text="""Compute homology with coefficients in the prime field Z/pZ for p=coeff.""") do_cocycles = models.BooleanField(default=False, help_text="Indicator of whether to compute cocycles.") n_perm = models.IntegerField(default=None, null=True, blank=True, help_text="""The number of points to subsample in a “greedy permutation,” or a furthest point sampling of the points. These points will be used in lieu of the full point cloud for a faster computation, at the expense of some accuracy, which can be bounded as a maximum bottleneck distance to all diagrams on the original point set""") entropy_normalized_graph = models.TextField(blank=True, null=True) entropy_unnormalized_graph = models.TextField(blank=True, null=True) class Meta(Analysis.Meta): verbose_name = "filtration analysis" verbose_name_plural = "filtration analyses" def save(self, *args, **kwargs): super().save(*args, **kwargs) run_analysis(self) self.entropy_normalized_graph = self.plot_entropy(True) self.entropy_unnormalized_graph = self.plot_entropy(False) super().save(*args, **kwargs) @models.permalink def get_absolute_url(self): return ('research:filtrationanalysis-detail', (), {'filtrationanalysis_slug': self.slug, 'research_slug': self.research.slug}) def execute(self, input_matrix, number=0): _thresh = math.inf if self.max_distances_considered is None else self.max_distances_considered result = ripser.ripser(input_matrix, maxdim=self.max_homology_dimension, thresh=_thresh, coeff=self.coeff, distance_matrix=True, do_cocycles=self.do_cocycles, n_perm=self.n_perm) window = FiltrationWindow.objects.create_window(number, self) window.save_data(result) def get_entropy_data(self, normalized): entropies = {"H"+str(i): [] for i in range(self.max_homology_dimension + 1)} # initialize result dict for window_batch in window_batch_generator(self): if normalized: entropy_dicts = map(lambda window: json.loads(window.result_entropy_normalized), window_batch) else: entropy_dicts = map(lambda window: json.loads(window.result_entropy_unnormalized), window_batch) for entropy_dict in entropy_dicts: for key, value in entropy_dict.items(): entropies[key].append(value) return entropies def plot_entropy(self, normalized): entropies = self.get_entropy_data(normalized) plt.figure(figsize=(10, 5)) for key in entropies: plt.plot(entropies[key], '-o') plt.legend([key for key in entropies]) figure = plt.gcf() html_figure = mpld3.fig_to_html(figure, template_type='general') plt.close() return html_figure def get_entropy_csv(self): entropies_normalized = self.get_entropy_data(True) entropies_unnormalized = self.get_entropy_data(False) entropies = {} for key in entropies_normalized: entropies[key+"_normalized"] = entropies_normalized[key] for key in entropies_unnormalized: entropies[key+"_unnormalized"] = entropies_unnormalized[key] df = pandas.DataFrame(entropies) return df.to_csv(index=True, header=True) def bottleneck_calculation_consecutive(self, homology): if Bottleneck.objects.filter(analysis=self, kind=Bottleneck.CONS, homology=homology).count() == 1: return # windows = FiltrationWindow.objects.filter(analysis=self).order_by('name') windows = window_batch_generator(self) bottleneck = Bottleneck.objects.create_bottleneck(self, Bottleneck.CONS, homology) bottleneck.run_bottleneck(windows) bottleneck.save() def bottleneck_calculation_alltoall(self, homology): if Bottleneck.objects.filter(analysis=self, kind=Bottleneck.ALL, homology=homology).count() == 1: return # windows = FiltrationWindow.objects.filter(analysis=self).order_by('name') batch_1 = window_batch_generator(self) batch_2 = window_batch_generator(self) bottleneck = Bottleneck.objects.create_bottleneck(self, Bottleneck.ALL, homology) bottleneck.run_bottleneck(batch_1, batch_2) bottleneck.save() def get_bottleneck(self, kind, homology): return Bottleneck.objects.get(analysis=self, kind=kind, homology=homology) def get_window_number(self): return FiltrationWindow.objects.filter(analysis=self).count() # multithreading decorator -> add connection.close() at end of function ''' def start_new_thread(function): def decorator(*args, **kwargs): t = Thread(target=function, args=args, kwargs=kwargs) t.daemon = True t.start() return decorator ''' @analysis_logger_decorator def single_run(instance): analysis_type = type(instance) StatusHolder().set_status(0) if analysis_type is FiltrationAnalysis: if instance.filtration_type == FiltrationAnalysis.VIETORIS_RIPS_FILTRATION: input_matrix = instance.dataset.get_distance_matrix(instance.distance_matrix_metric) elif instance.filtration_type == FiltrationAnalysis.CLIQUE_WEIGHTED_RANK_FILTRATION: input_matrix = instance.dataset.get_correlation_matrix() instance.execute(input_matrix) elif analysis_type is MapperAnalysis: input_matrix = instance.dataset.get_distance_matrix(instance.distance_matrix_metric) original_matrix = numpy.array(instance.dataset.get_matrix_data()) instance.execute(input_matrix, original_matrix) @analysis_logger_decorator def multiple_run(instance, window_generator): count = 0 analysis_type = type(instance) if analysis_type is FiltrationAnalysis: for window in window_generator: if instance.filtration_type == FiltrationAnalysis.VIETORIS_RIPS_FILTRATION: input_matrix = distance_matrix(window, instance.distance_matrix_metric) elif instance.filtration_type == FiltrationAnalysis.CLIQUE_WEIGHTED_RANK_FILTRATION: input_matrix = correlation_matrix(window) instance.execute(input_matrix, count) count = count + 1 if StatusHolder().get_kill(): return StatusHolder().set_status(count) elif analysis_type is MapperAnalysis: for window in window_generator: input_matrix = distance_matrix(window, instance.distance_matrix_metric) original_matrix = numpy.array(window) instance.execute(input_matrix, original_matrix, count) count = count + 1 if StatusHolder().get_kill(): return StatusHolder().set_status(count) @analysis_logger_decorator def multiple_run_precomputed(instance, precomputed_matrixes): count = 0 analysis_type = type(instance) if analysis_type is FiltrationAnalysis: for matrix in precomputed_matrixes: instance.execute(numpy.array(matrix), count) count = count + 1 if StatusHolder().get_kill(): return StatusHolder().set_status(count) elif analysis_type is MapperAnalysis: for matrix in precomputed_matrixes: original_matrix = numpy.array(matrix) instance.execute(numpy.array(matrix), original_matrix, count) count = count + 1 if StatusHolder().get_kill(): return StatusHolder().set_status(count) def run_analysis(instance): precomputed_distance_matrixes = json.loads(instance.precomputed_distance_matrix_json) if instance.window_size is not None and precomputed_distance_matrixes == []: window_generator = instance.dataset.split_matrix(instance.window_size, instance.window_overlap) multiple_run(instance, window_generator) elif precomputed_distance_matrixes != [] and instance.window_size is None: multiple_run_precomputed(instance, precomputed_distance_matrixes) else: single_run(instance) gc.collect()
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/models/bottleneck.py
import matplotlib import matplotlib.pyplot as plt import persim import ripser import base64 import numpy import pandas import gc from io import BytesIO from django.db import models from django.core.exceptions import ObjectDoesNotExist from ..consumers import StatusHolder, bottleneck_logger_decorator matplotlib.use('Agg') class BottleneckManager(models.Manager): def create_bottleneck(self, owner, kind, homology): if kind == Bottleneck.CONS or kind == Bottleneck.ALL: bottleneck = self.create(analysis=owner, kind=kind, homology=homology) elif kind == Bottleneck.ONE: bottleneck = self.create(window=owner, kind=kind, homology=homology) return bottleneck class DiagramManager(models.Manager): def create_diagram(self, bottleneck, window1, window2, value, image): return self.create(bottleneck=bottleneck, window1=window1, window2=window2, bottleneck_distance=value, image=image) class Bottleneck(models.Model): CONS = 'consecutive' ONE = 'one_to_all' ALL = 'all_to_all' BOTTLENECK_TYPES = [(CONS, 'consecutive'), (ONE, 'one_to_all'), (ALL, 'all_to_all')] analysis = models.ForeignKey( 'analysis.FiltrationAnalysis', on_delete=models.CASCADE, null=True ) window = models.ForeignKey( 'analysis.FiltrationWindow', on_delete=models.CASCADE, null=True ) homology = models.PositiveIntegerField() kind = models.CharField(choices=BOTTLENECK_TYPES, max_length=20) objects = BottleneckManager() def manage_persim_crash(self, window, other_window_name): diagram = window.get_diagram(self.homology) if diagram == []: diagram = numpy.empty(shape=(0, 2)) else: diagram = numpy.array(diagram) ripser.Rips().plot(diagram, labels='window_'+str(window.name)+', window_'+str(other_window_name)) # Save it to a temporary buffer. buf = BytesIO() plt.savefig(buf, format="png") # Embed the result in the html output. data = base64.b64encode(buf.getbuffer()).decode("ascii") plt.close() return (0, f"<img src='data:image/png;base64,{data}'/>") def __bottleneck(self, reference_window, window): diag1 = reference_window.get_diagram(self.homology) diag2 = window.get_diagram(self.homology) if diag1.size == 0 or diag2.size == 0: return if reference_window == window: (d, image) = self.manage_persim_crash(reference_window, window.name) else: (d, (matching, D)) = persim.bottleneck(diag1, diag2, True) image = self.plot_bottleneck(reference_window, window, matching, D) diagram = Diagram.objects.create_diagram(self, reference_window, window, d, image) diagram.save() @bottleneck_logger_decorator def bottleneck_calculation_CONS(self, windows): last = None for window_batch in windows: batch = list(window_batch) if last is not None and batch != []: self.__bottleneck(last, batch[0]) for i, window1 in enumerate(batch[:-1]): window2 = batch[i+1] self.__bottleneck(window1, window2) if StatusHolder().get_kill(): return StatusHolder().set_status(window1.name) last = batch[-1] @bottleneck_logger_decorator def bottleneck_calculation_ONE(self, windows): reference_window = self.window for window_batch in windows: for window in window_batch: self.__bottleneck(reference_window, window) if StatusHolder().get_kill(): return StatusHolder().set_status(window.name) gc.collect() @bottleneck_logger_decorator def bottleneck_calculation_ALL(self, batch_1, batch_2): batch_2 = list(batch_2) for window_batch_1 in batch_1: for reference_window in window_batch_1: StatusHolder().set_status(reference_window.name) for window_batch_2 in batch_2: for window in window_batch_2: if window.name < reference_window.name: continue self.__bottleneck(reference_window, window) if StatusHolder().get_kill(): return gc.collect() gc.collect() def plot_bottleneck(self, window1, window2, matchidx, D): persim.bottleneck_matching(window1.get_diagram(self.homology), window2.get_diagram(self.homology), matchidx, D, labels=["window_"+str(window1.name), "window_"+str(window2.name)]) buf = BytesIO() plt.savefig(buf, format="png") # Embed the result in the html output. data = base64.b64encode(buf.getbuffer()).decode("ascii") plt.close() return f"<img src='data:image/png;base64,{data}'/>" def run_bottleneck(self, *args): if self.kind == self.ONE: self.bottleneck_calculation_ONE(*args) elif self.kind == self.CONS: self.bottleneck_calculation_CONS(*args) elif self.kind == self.ALL: self.bottleneck_calculation_ALL(*args) def get_bottleneck_matrix(self): diagrams = Diagram.objects.filter(bottleneck=self).order_by('window1__name', 'window2__name') if self.kind == self.ONE: data = [] labels = [] reference_window = diagrams.first().window1.name for diagram in diagrams: data.append(diagram.bottleneck_distance) labels.append(str(diagram.window2.name)) df = pandas.DataFrame([data], index=[str(reference_window)], columns=labels) return df.to_csv(index=True, header=True) elif self.kind == self.CONS: data = [] labels = [] for diagram in diagrams: data.append(diagram.bottleneck_distance) labels.append(str(diagram.window1.name)) df = pandas.DataFrame([data], index=['n+1'], columns=labels) return df.to_csv(index=True, header=True) elif self.kind == self.ALL: row = diagrams.filter(window1__name=0) n_cols = row.count() # actual number of cols expected_cols = self.analysis.get_window_number() labels = [i for i in range(expected_cols)] matrix = [] i = 0 while(n_cols != 0): current_row = [] for j in range(expected_cols): if j < i: current_row.append(0) else: try: current_row.append(diagrams.get(window1__name=i, window2__name=j).bottleneck_distance) except ObjectDoesNotExist: current_row.append(float('NaN')) matrix.append(current_row) i = i + 1 row = diagrams.filter(window1__name=i) n_cols = row.count() if matrix == [] or len(matrix) < expected_cols: for i in range(expected_cols - len(matrix)): matrix.append([float('NaN')]*expected_cols) out = matrix else: matrix = numpy.array(matrix) out = matrix.T + matrix numpy.fill_diagonal(out, numpy.diag(matrix)) df = pandas.DataFrame(out, index=labels, columns=labels) return df.to_csv(index=True, header=True) def get_diagrams(self): return Diagram.objects.filter(bottleneck=self).order_by('window1__name', 'window2__name') class Diagram(models.Model): bottleneck = models.ForeignKey( Bottleneck, on_delete=models.CASCADE ) window1 = models.ForeignKey( 'analysis.FiltrationWindow', on_delete=models.CASCADE, related_name='window1' ) window2 = models.ForeignKey( 'analysis.FiltrationWindow', on_delete=models.CASCADE, related_name='window2' ) image = models.TextField() bottleneck_distance = models.FloatField() objects = DiagramManager()
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/models/window.py
import json import matplotlib import matplotlib.pyplot as plt import ripser import numpy import math import base64 from io import BytesIO from django.contrib.postgres.fields import JSONField from django.db import models from django.utils.text import slugify from .bottleneck import Bottleneck matplotlib.use('Agg') def window_batch_generator(analysis): window_count = FiltrationWindow.objects.filter(analysis=analysis).order_by('name').count() batch_size = window_count // 16 if window_count > 16 else 16 remainder = 1 if window_count % 16 != 0 else 0 for window_batch in range(window_count // batch_size + remainder): windows = FiltrationWindow.objects.filter(analysis=analysis).order_by( 'name')[batch_size*window_batch:batch_size*window_batch+batch_size] yield windows class WindowManager(models.Manager): def create_window(self, name, analysis): window = self.create(name=name, analysis=analysis) return window class Window(models.Model): name = models.PositiveIntegerField() slug = models.SlugField(db_index=True, max_length=150) creation_date = models.DateTimeField(auto_now_add=True) start = models.PositiveIntegerField(null=True, blank=True) end = models.PositiveIntegerField(null=True, blank=True) class Meta: abstract = True def save_window_info(self): analysis = self.analysis if json.loads(analysis.precomputed_distance_matrix_json) != []: # no windows and no datasets are being used self.start = None self.end = None else: if analysis.window_size is None: # no windows are used self.start = 0 self.end = analysis.dataset.cols else: self.start = 0 if self.name == 0 else self.name * analysis.window_size - analysis.window_overlap self.end = self.start + analysis.window_size def save(self, *args, **kwargs): if not self.id: self.slug = slugify(self.name) super().save(*args, **kwargs) class FiltrationWindow(Window): analysis = models.ForeignKey( 'analysis.FiltrationAnalysis', on_delete=models.CASCADE ) result_matrix = JSONField(blank=True, null=True) diagram = models.TextField(blank=True, null=True) result_entropy_normalized = JSONField(blank=True, null=True) result_entropy_unnormalized = JSONField(blank=True, null=True) objects = WindowManager() def save_data(self, result): self.save_diagram(result['dgms']) self.save_entropy_json(result['dgms']) self.save_matrix_json(result) # this method modifies permanently the result dict self.save_window_info() self.save() def save_diagram(self, diagrams): self.diagram = self.plot(diagrams) def get_diagram(self, homology): diagrams = json.loads(self.result_matrix)['dgms'] return numpy.array(diagrams[homology]) def save_matrix_json(self, analysis_result_matrix): for k in analysis_result_matrix: if isinstance(analysis_result_matrix[k], numpy.ndarray): analysis_result_matrix[k] = analysis_result_matrix[k].tolist() elif isinstance(analysis_result_matrix[k], list): analysis_result_matrix[k] = [l.tolist() for l in analysis_result_matrix[k] if isinstance(l, numpy.ndarray)] self.result_matrix = json.dumps(analysis_result_matrix) def save_entropy_json(self, diagrams): entropies_normalized = dict() entropies_unnormalized = dict() i = 0 for ripser_matrix in diagrams: entropies_normalized["H"+str(i)] = FiltrationWindow.calculate_entropy(ripser_matrix, True) entropies_unnormalized["H"+str(i)] = FiltrationWindow.calculate_entropy(ripser_matrix, False) i = i + 1 self.result_entropy_normalized = json.dumps(entropies_normalized) self.result_entropy_unnormalized = json.dumps(entropies_unnormalized) @staticmethod def calculate_entropy(ripser_matrix, normalize=False): if ripser_matrix.size == 0: return 0 non_infinity = list(filter((lambda x: x[1] != math.inf), ripser_matrix)) if non_infinity == []: # single infinity element return 0 max_death = max(map((lambda x: x[1]), non_infinity)) + 1 li = list(map((lambda x: x[1]-x[0] if x[1] != math.inf else max_death - x[0]), ripser_matrix)) ltot = sum(li) if normalize: norm_value = (1 / numpy.log10(len(ripser_matrix))) if len(ripser_matrix) != 1 else 1 return norm_value * -sum(map((lambda x: x/ltot * numpy.log10(x/ltot)), li)) else: return -sum(map((lambda x: x/ltot * math.log10(x/ltot)), li)) def plot(self, diagrams): ripser.Rips().plot(diagrams) # Save it to a temporary buffer. buf = BytesIO() plt.savefig(buf, format="png") # Embed the result in the html output. data = base64.b64encode(buf.getbuffer()).decode("ascii") plt.close() return f"<img src='data:image/png;base64,{data}'/>" def bottleneck_calculation_onetoall(self, homology): if Bottleneck.objects.filter(window=self, kind=Bottleneck.ONE, homology=homology).count() == 1: return # windows = FiltrationWindow.objects.filter(analysis=self.analysis).order_by('name') windows = window_batch_generator(self.analysis) bottleneck = Bottleneck.objects.create_bottleneck(self, Bottleneck.ONE, homology) bottleneck.run_bottleneck(windows) bottleneck.save() def get_bottleneck(self, homology): return Bottleneck.objects.get(window=self, kind=Bottleneck.ONE, homology=homology) def get_window_number(self): return self.analysis.get_window_number() class MapperWindow(Window): analysis = models.ForeignKey( 'analysis.MapperAnalysis', on_delete=models.CASCADE, related_name='windows', related_query_name='window' ) graph = models.TextField(blank=True, null=True) objects = WindowManager() def save_data(self, output_graph): self.graph = output_graph self.save_window_info() self.save()
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/routing.py
from django.conf.urls import url from . import consumers websocket_urlpatterns = [ # (http->django views is added by default) url(r'^ws/analysis/', consumers.AnalysisConsumer), ]
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/signals.py
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/tests.py
from django.test import TestCase # Create your tests here.
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/urls.py
from django.urls import path from .views import ( AnalysisListView, FiltrationAnalysisCreateView, MapperAnalysisCreateView, AnalysisDetailView, AnalysisDeleteView, WindowListView, WindowDetailView, MapperAnalysisView, WindowBottleneckView, AnalysisConsecutiveBottleneckView, AnalysisAlltoallBottleneckView, SourceChoice, RipserDownloadView, EntropyDownloadView, BottleneckALLDownloadView, BottleneckCONSDownloadView, BottleneckONEDownloadView, AnalysisBottleneckCreateView, WindowBottleneckCreateView, ONEBottleneckDeleteView, CONSBottleneckDeleteView, ALLBottleneckDeleteView ) app_name = 'analysis' urlpatterns = [ path("", view=AnalysisListView.as_view(), name="analysis-list"), path("add/", view=SourceChoice, name="analysis-source-choice"), path("add/<form>/filtrationanalysis/", view=FiltrationAnalysisCreateView.as_view(), name="filtrationanalysis-create"), # noqa path("add/<form>/mapperanalysis/", view=MapperAnalysisCreateView.as_view(), name="mapperanalysis-create"), # noqa path("<slug:analysis_slug>/", view=AnalysisDetailView.as_view(), name="analysis-detail"), # noqa path("<slug:analysis_slug>/delete/", view=AnalysisDeleteView.as_view(), name="analysis-delete"), # noqa path("<slug:analysis_slug>/windows/", view=WindowListView.as_view(), name="window-list"), # noqa path("<slug:analysis_slug>/windows/<slug:window_slug>/", view=WindowDetailView.as_view(), name="window-detail"), # noqa path("<slug:analysis_slug>/windows/<slug:window_slug>/bottleneck/", view=WindowBottleneckCreateView, name="window-bottleneck-create"), # noqa path("<slug:analysis_slug>/windows/<slug:window_slug>/graph/", view=MapperAnalysisView.as_view(), name="mapperanalysis-graph"), # noqa path("<slug:analysis_slug>/windows/<slug:window_slug>/<int:homology>/bottleneck_onetoall/", view=WindowBottleneckView.as_view(), name="window-bottleneck-onetoall"), # noqa path("<slug:analysis_slug>/bottleneck/", view=AnalysisBottleneckCreateView, name="analysis-bottleneck-create"), # noqa path("<slug:analysis_slug>/<int:homology>/bottleneck_consecutive/", view=AnalysisConsecutiveBottleneckView.as_view(), name="analysis-bottleneck-consecutive"), # noqa path("<slug:analysis_slug>/<int:homology>/bottleneck_alltoall/", view=AnalysisAlltoallBottleneckView.as_view(), name="analysis-bottleneck-alltoall"), # noqa path("<slug:analysis_slug>/windows/<slug:window_slug>/ripser_download/", view=RipserDownloadView.as_view(), name="ripser-download"), # noqa path("<slug:analysis_slug>/entropy_download/", view=EntropyDownloadView.as_view(), name="entropy-download"), # noqa path("<slug:analysis_slug>/<int:homology>/bottleneck_alltoall/bottleneck_ALL_download/", view=BottleneckALLDownloadView.as_view(), name="bottleneck-ALL-download"), # noqa path("<slug:analysis_slug>/<int:homology>/bottleneck_consecutive/bottleneck_CONS_download/", view=BottleneckCONSDownloadView.as_view(), name="bottleneck-CONS-download"), # noqa path("<slug:analysis_slug>/windows/<slug:window_slug>/<int:homology>/bottleneck_onetoall/bottleneck_ONE_download/", view=BottleneckONEDownloadView.as_view(), name="bottleneck-ONE-download"), # noqa path("<slug:analysis_slug>/windows/<slug:window_slug>/<int:homology>/bottleneck_onetoall/delete/", view=ONEBottleneckDeleteView.as_view(), name="bottleneck-delete-ONE"), # noqa path("<slug:analysis_slug>/<int:homology>/bottleneck_consecutive/delete/", view=CONSBottleneckDeleteView.as_view(), name="bottleneck-delete-CONS"), # noqa path("<slug:analysis_slug>/<int:homology>/bottleneck_alltoall/delete/", view=ALLBottleneckDeleteView.as_view(), name="bottleneck-delete-ALL"), # noqa ]
[]
[]
[]
archives/097475_hansberger.zip
hansberger/analysis/views.py
import numpy import json from itertools import chain from django.shortcuts import redirect from django.http import HttpResponse from django_downloadview import VirtualDownloadView from django.core.files.base import ContentFile from django.shortcuts import get_object_or_404, render from django.urls import reverse_lazy from django.db.transaction import non_atomic_requests from django.utils.decorators import method_decorator from django.views.generic import ( View, CreateView, DeleteView, DetailView, ListView, ) from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from .models import ( Analysis, FiltrationAnalysis, MapperAnalysis, Window, FiltrationWindow, MapperWindow, Bottleneck, ) from research.models import Research from .forms import ( SourceChoiceForm, FiltrationAnalysisCreationForm_Dataset, FiltrationAnalysisCreationForm_Precomputed, MapperAnalysisCreationForm_Dataset, MapperAnalysisCreationForm_Precomputed, AnalysisBottleneckCreationForm, WindowBottleneckCreationForm ) form_dict = { 'filtration_analysis': { 'precomputed': FiltrationAnalysisCreationForm_Precomputed, 'dataset': FiltrationAnalysisCreationForm_Dataset }, 'mapper_analysis': { 'precomputed': MapperAnalysisCreationForm_Precomputed, 'dataset': MapperAnalysisCreationForm_Dataset } } def SourceChoice(request, research_slug): research = get_object_or_404(Research, slug=research_slug) # if this is a POST request we need to process the form data if request.method == 'POST': # create a form instance and populate it with data from the request: form = SourceChoiceForm(request.POST) # check whether it's valid: if form.is_valid(): cleaned_data = form.cleaned_data analysis = cleaned_data.get("analysis") source = cleaned_data.get("source") if analysis == 'filtration_analysis': return redirect('analysis:filtrationanalysis-create', form=source, research_slug=research.slug) elif analysis == 'mapper_analysis': return redirect('analysis:mapperanalysis-create', form=source, research_slug=research.slug) # if a GET (or any other method) we'll create a blank form else: form = SourceChoiceForm() return render(request, 'analysis/analysis_source_choice.html', {'form': form, 'research': research}) class AnalysisDetailView(View): def get(self, request, *args, **kwargs): my_analysis = (FiltrationAnalysis.objects.filter( research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ).first() or MapperAnalysis.objects.filter( research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ).first()) if isinstance(my_analysis, FiltrationAnalysis): return render(request, 'analysis/filtrationanalysis_detail.html', context={'analysis': my_analysis, 'homology': range(my_analysis.max_homology_dimension + 1)}) elif isinstance(my_analysis, MapperAnalysis): return render(request, 'analysis/mapperanalysis_detail.html', context={'analysis': my_analysis}) class AnalysisDeleteView(DeleteView): model = Analysis context_object_name = 'analysis' template_name = "analysis/analysis_confirm_delete.html" def get_object(self): return (FiltrationAnalysis.objects.filter( research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ).first() or MapperAnalysis.objects.filter( research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ).first()) def get_success_url(self): return reverse_lazy('analysis:analysis-list', kwargs={ 'research_slug': self.kwargs['research_slug'] }) class AnalysisListView(ListView): model = Analysis context_object_name = 'analyses' paginate_by = 10 template_name = "analysis/analysis_list.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['research'] = self.research return context def get_queryset(self): self.research = get_object_or_404( Research, slug=self.kwargs['research_slug'] ) filtration_analyses = FiltrationAnalysis.objects.filter( research=self.research ).only('name', 'creation_date', 'slug', 'research') mapper_analyses = MapperAnalysis.objects.filter( research=self.research ).only('name', 'creation_date', 'slug', 'research') return sorted(chain(filtration_analyses, mapper_analyses), key=lambda x: x.creation_date, reverse=True) @method_decorator(non_atomic_requests, name='dispatch') class FiltrationAnalysisCreateView(CreateView): model = FiltrationAnalysis def get_template_names(self): print(self.get_form_class()) if self.get_form_class() is FiltrationAnalysisCreationForm_Dataset: return "analysis/filtrationanalysis_dataset_form.html" elif self.get_form_class() is FiltrationAnalysisCreationForm_Precomputed: return "analysis/filtrationanalysis_precomputed_form.html" def get_form_class(self): return form_dict['filtration_analysis'][self.kwargs['form']] def get_success_url(self): return reverse_lazy('analysis:analysis-detail', kwargs={ 'research_slug': self.kwargs['research_slug'], 'analysis_slug': self.analysis.slug }) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['research'] = self.research return context def get_form_kwargs(self): kwargs = super().get_form_kwargs() self.research = get_object_or_404( Research, slug=self.kwargs['research_slug'] ) kwargs['research'] = self.research return kwargs def form_valid(self, form): self.analysis = form.save(commit=False) self.analysis.precomputed_distance_matrix_json = self.precomputed_distance_matrix_json return super().form_valid(form) def post(self, request, *args, **kwargs): self.object = None form_class = self.get_form_class() form = self.get_form(form_class) files = request.FILES.getlist('precomputed_distance_matrix') if form.is_valid(): precomputed_distance_matrixes = [] for f in sorted(files): precomputed_distance_matrixes.append(numpy.loadtxt(f).tolist()) self.precomputed_distance_matrix_json = json.dumps(precomputed_distance_matrixes) return self.form_valid(form) else: return self.form_invalid(form) @method_decorator(non_atomic_requests, name='dispatch') class MapperAnalysisCreateView(CreateView): model = MapperAnalysis def get_template_names(self): if self.get_form_class() is MapperAnalysisCreationForm_Dataset: return "analysis/mapperanalysis_dataset_form.html" elif self.get_form_class() is MapperAnalysisCreationForm_Precomputed: return "analysis/mapperanalysis_precomputed_form.html" def get_form_class(self): return form_dict['mapper_analysis'][self.kwargs['form']] def get_success_url(self): return reverse_lazy('analysis:analysis-detail', kwargs={ 'research_slug': self.kwargs['research_slug'], 'analysis_slug': self.analysis.slug }) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['research'] = self.research return context def get_form_kwargs(self): kwargs = super().get_form_kwargs() self.research = get_object_or_404( Research, slug=self.kwargs['research_slug'] ) kwargs['research'] = self.research return kwargs def form_valid(self, form): self.analysis = form.save(commit=False) self.analysis.precomputed_distance_matrix_json = self.precomputed_distance_matrix_json return super().form_valid(form) def post(self, request, *args, **kwargs): self.object = None form_class = self.get_form_class() form = self.get_form(form_class) files = request.FILES.getlist('precomputed_distance_matrix') if form.is_valid(): precomputed_distance_matrixes = [] for f in files: precomputed_distance_matrixes.append(numpy.loadtxt(f).tolist()) self.precomputed_distance_matrix_json = json.dumps(precomputed_distance_matrixes) return self.form_valid(form) else: return self.form_invalid(form) class MapperAnalysisView(View): def get(self, request, *args, **kwargs): my_analysis = get_object_or_404( MapperAnalysis, research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ) my_window = get_object_or_404( MapperWindow, analysis=my_analysis, slug=self.kwargs['window_slug'] ) return HttpResponse(my_window.graph) class WindowDetailView(DetailView): def get(self, request, *args, **kwargs): my_analysis = (FiltrationAnalysis.objects.filter( research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ).first() or MapperAnalysis.objects.filter( research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ).first()) if type(my_analysis) is FiltrationAnalysis: my_window = get_object_or_404( FiltrationWindow, analysis=my_analysis, slug=self.kwargs['window_slug'] ) elif type(my_analysis) is MapperAnalysis: my_window = get_object_or_404( MapperWindow, analysis=my_analysis, slug=self.kwargs['window_slug'] ) if isinstance(my_window, FiltrationWindow): return render(request, 'analysis/window/filtrationwindow_detail.html', context={'window': my_window, 'homology': range(my_analysis.max_homology_dimension + 1)}) elif isinstance(my_window, MapperWindow): return render(request, 'analysis/window/mapperwindow_detail.html', context={'window': my_window}) class WindowListView(ListView): model = Window context_object_name = 'windows' paginate_by = 10 template_name = "analysis/window/window_list.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['analysis'] = self.analysis return context def get_queryset(self): self.analysis = (FiltrationAnalysis.objects.filter( research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ).first() or MapperAnalysis.objects.filter( research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ).first()) if type(self.analysis) is FiltrationAnalysis: windows = FiltrationWindow.objects.filter( analysis=self.analysis ) elif type(self.analysis) is MapperAnalysis: windows = MapperWindow.objects.filter( analysis=self.analysis ) return windows.only('name', 'creation_date', 'slug').order_by('name') class WindowBottleneckView(View): def get(self, request, *args, **kwargs): my_analysis = get_object_or_404( FiltrationAnalysis, research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ) my_window = get_object_or_404( FiltrationWindow, analysis=my_analysis, slug=self.kwargs['window_slug'] ) my_window.bottleneck_calculation_onetoall(self.kwargs['homology']) bottleneck = my_window.get_bottleneck(self.kwargs['homology']) diagram_list = bottleneck.get_diagrams() page = request.GET.get('page', 1) paginator = Paginator(diagram_list, 10) try: diagrams = paginator.page(page) except PageNotAnInteger: diagrams = paginator.page(1) except EmptyPage: diagrams = paginator.page(paginator.num_pages) return render(request, 'analysis/window/filtrationwindow_bottleneck.html', context={'diagrams': diagrams, 'window': my_window}) class AnalysisConsecutiveBottleneckView(View): def get(self, request, *args, **kwargs): my_analysis = get_object_or_404( FiltrationAnalysis, research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ) my_analysis.bottleneck_calculation_consecutive(self.kwargs['homology']) bottleneck = my_analysis.get_bottleneck(Bottleneck.CONS, self.kwargs['homology']) diagram_list = bottleneck.get_diagrams() page = request.GET.get('page', 1) paginator = Paginator(diagram_list, 10) try: diagrams = paginator.page(page) except PageNotAnInteger: diagrams = paginator.page(1) except EmptyPage: diagrams = paginator.page(paginator.num_pages) return render(request, 'analysis/filtrationanalysis_bottleneck_consecutive.html', context={'diagrams': diagrams, 'analysis': my_analysis }) class AnalysisAlltoallBottleneckView(View): def get(self, request, *args, **kwargs): my_analysis = get_object_or_404( FiltrationAnalysis, research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ) my_analysis.bottleneck_calculation_alltoall(self.kwargs['homology']) bottleneck = my_analysis.get_bottleneck(Bottleneck.ALL, self.kwargs['homology']) diagram_list = bottleneck.get_diagrams() page = request.GET.get('page', 1) paginator = Paginator(diagram_list, 10) try: diagrams = paginator.page(page) except PageNotAnInteger: diagrams = paginator.page(1) except EmptyPage: diagrams = paginator.page(paginator.num_pages) return render(request, 'analysis/filtrationanalysis_bottleneck_alltoall.html', context={'diagrams': diagrams, 'analysis': my_analysis }) class RipserDownloadView(VirtualDownloadView): def get_object(self): my_analysis = get_object_or_404( FiltrationAnalysis, research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ) return get_object_or_404( FiltrationWindow, analysis=my_analysis, slug=self.kwargs['window_slug'] ) def get_file(self): window_analysis = self.get_object() return ContentFile(window_analysis.result_matrix, name=window_analysis.analysis.research.name + '_' + window_analysis.analysis.name + '_' + str(window_analysis.name) + '.dat') class EntropyDownloadView(VirtualDownloadView): def get_object(self): return get_object_or_404( FiltrationAnalysis, research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ) def get_file(self): analysis = self.get_object() return ContentFile(analysis.get_entropy_csv(), name=analysis.research.name + '_' + analysis.name + '_entropy.csv') class BottleneckONEDownloadView(VirtualDownloadView): def get_object(self): my_analysis = get_object_or_404( FiltrationAnalysis, research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ) my_window = get_object_or_404( FiltrationWindow, analysis=my_analysis, slug=self.kwargs['window_slug'] ) return get_object_or_404( Bottleneck, window=my_window, kind=Bottleneck.ONE, homology=self.kwargs['homology'] ) def get_file(self): bottleneck = self.get_object() return ContentFile(bottleneck.get_bottleneck_matrix(), name=bottleneck.window.analysis.research.name + '_' + bottleneck.window.analysis.name + '_' + str(bottleneck.window.name) + '_bottleneck_distance_one_to_all_H' + str(bottleneck.homology) + '.csv') class BottleneckALLDownloadView(VirtualDownloadView): def get_object(self): my_analysis = get_object_or_404( FiltrationAnalysis, research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ) return get_object_or_404( Bottleneck, analysis=my_analysis, kind=Bottleneck.ALL, homology=self.kwargs['homology'] ) def get_file(self): bottleneck = self.get_object() return ContentFile(bottleneck.get_bottleneck_matrix(), name=bottleneck.analysis.research.name + '_' + bottleneck.analysis.name + '_bottleneck_distance_all_to_all_H' + str(bottleneck.homology) + '.csv') class BottleneckCONSDownloadView(VirtualDownloadView): def get_object(self): my_analysis = get_object_or_404( FiltrationAnalysis, research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ) return get_object_or_404( Bottleneck, analysis=my_analysis, kind=Bottleneck.CONS, homology=self.kwargs['homology'] ) def get_file(self): bottleneck = self.get_object() return ContentFile(bottleneck.get_bottleneck_matrix(), name=bottleneck.analysis.research.name + '_' + bottleneck.analysis.name + '_bottleneck_distance_consecutive_H' + str(bottleneck.homology) + '.csv') def AnalysisBottleneckCreateView(request, research_slug, analysis_slug): research = get_object_or_404(Research, slug=research_slug) analysis = get_object_or_404(FiltrationAnalysis, research=research, slug=analysis_slug) # if this is a POST request we need to process the form data if request.method == 'POST': # create a form instance and populate it with data from the request: form = AnalysisBottleneckCreationForm(analysis.max_homology_dimension, request.POST) # check whether it's valid: if form.is_valid(): cleaned_data = form.cleaned_data bottleneck_type = cleaned_data.get("bottleneck_type") homology = cleaned_data.get("homology") if bottleneck_type == Bottleneck.CONS: return redirect('analysis:analysis-bottleneck-consecutive', homology=homology, analysis_slug=analysis.slug, research_slug=research.slug) elif bottleneck_type == Bottleneck.ALL: return redirect('analysis:analysis-bottleneck-alltoall', homology=homology, analysis_slug=analysis.slug, research_slug=research.slug) # if a GET (or any other method) we'll create a blank form else: form = AnalysisBottleneckCreationForm(analysis.max_homology_dimension) return render(request, 'analysis/analysis_bottleneck_form.html', {'form': form, 'research': research, 'analysis': analysis}) def WindowBottleneckCreateView(request, research_slug, analysis_slug, window_slug): research = get_object_or_404(Research, slug=research_slug) analysis = get_object_or_404(FiltrationAnalysis, research=research, slug=analysis_slug) window = get_object_or_404(FiltrationWindow, analysis=analysis, slug=window_slug) # if this is a POST request we need to process the form data if request.method == 'POST': # create a form instance and populate it with data from the request: form = WindowBottleneckCreationForm(analysis.max_homology_dimension, request.POST) # check whether it's valid: if form.is_valid(): cleaned_data = form.cleaned_data homology = cleaned_data.get("homology") return redirect('analysis:window-bottleneck-onetoall', homology=homology, window_slug=window.slug, analysis_slug=analysis.slug, research_slug=research.slug) # if a GET (or any other method) we'll create a blank form else: form = WindowBottleneckCreationForm(analysis.max_homology_dimension) return render(request, 'analysis/window/window_bottleneck_form.html', {'form': form, 'research': research, 'analysis': analysis, 'window': window}) class ALLBottleneckDeleteView(DeleteView): model = Bottleneck context_object_name = 'bottleneck' template_name = "analysis/bottleneck_confirm_delete_ALL.html" def get_object(self): my_analysis = get_object_or_404( FiltrationAnalysis, research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ) return get_object_or_404( Bottleneck, analysis=my_analysis, homology=self.kwargs['homology'], kind=Bottleneck.ALL ) def get_success_url(self): return reverse_lazy('analysis:analysis-detail', kwargs={ 'research_slug': self.kwargs['research_slug'], 'analysis_slug': self.kwargs['analysis_slug'] }) class CONSBottleneckDeleteView(DeleteView): model = Bottleneck context_object_name = 'bottleneck' template_name = "analysis/bottleneck_confirm_delete_CONS.html" def get_object(self): my_analysis = get_object_or_404( FiltrationAnalysis, research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ) return get_object_or_404( Bottleneck, analysis=my_analysis, homology=self.kwargs['homology'], kind=Bottleneck.CONS ) def get_success_url(self): return reverse_lazy('analysis:analysis-detail', kwargs={ 'research_slug': self.kwargs['research_slug'], 'analysis_slug': self.kwargs['analysis_slug'] }) class ONEBottleneckDeleteView(DeleteView): model = Bottleneck context_object_name = 'bottleneck' template_name = "analysis/window/bottleneck_confirm_delete_ONE.html" def get_object(self): my_analysis = get_object_or_404( FiltrationAnalysis, research__slug=self.kwargs['research_slug'], slug=self.kwargs['analysis_slug'] ) my_window = get_object_or_404( FiltrationWindow, analysis=my_analysis, slug=self.kwargs['window_slug'] ) return get_object_or_404( Bottleneck, window=my_window, homology=self.kwargs['homology'], kind=Bottleneck.ONE ) def get_success_url(self): return reverse_lazy('analysis:window-detail', kwargs={ 'research_slug': self.kwargs['research_slug'], 'analysis_slug': self.kwargs['analysis_slug'], 'window_slug': self.kwargs['window_slug'] })
[]
[]
[]
archives/097475_hansberger.zip
hansberger/conftest.py
import pytest from django.conf import settings from django.test import RequestFactory from hansberger.users.tests.factories import UserFactory @pytest.fixture(autouse=True) def media_storage(settings, tmpdir): settings.MEDIA_ROOT = tmpdir.strpath @pytest.fixture def user() -> settings.AUTH_USER_MODEL: return UserFactory() @pytest.fixture def request_factory() -> RequestFactory: return RequestFactory()
[]
[]
[]
archives/097475_hansberger.zip
hansberger/contrib/__init__.py
""" To understand why this file is here, please read: http://cookiecutter-django.readthedocs.io/en/latest/faq.html#why-is-there-a-django-contrib-sites-directory-in-cookiecutter-django """
[]
[]
[]
archives/097475_hansberger.zip
hansberger/contrib/sites/__init__.py
""" To understand why this file is here, please read: http://cookiecutter-django.readthedocs.io/en/latest/faq.html#why-is-there-a-django-contrib-sites-directory-in-cookiecutter-django """
[]
[]
[]
archives/097475_hansberger.zip
hansberger/contrib/sites/migrations/0001_initial.py
import django.contrib.sites.models from django.contrib.sites.models import _simple_domain_name_validator from django.db import migrations, models class Migration(migrations.Migration): dependencies = [] operations = [ migrations.CreateModel( name="Site", fields=[ ( "id", models.AutoField( verbose_name="ID", serialize=False, auto_created=True, primary_key=True, ), ), ( "domain", models.CharField( max_length=100, verbose_name="domain name", validators=[_simple_domain_name_validator], ), ), ("name", models.CharField(max_length=50, verbose_name="display name")), ], options={ "ordering": ("domain",), "db_table": "django_site", "verbose_name": "site", "verbose_name_plural": "sites", }, bases=(models.Model,), managers=[("objects", django.contrib.sites.models.SiteManager())], ) ]
[]
[]
[]
archives/097475_hansberger.zip
hansberger/contrib/sites/migrations/0002_alter_domain_unique.py
import django.contrib.sites.models from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("sites", "0001_initial")] operations = [ migrations.AlterField( model_name="site", name="domain", field=models.CharField( max_length=100, unique=True, validators=[django.contrib.sites.models._simple_domain_name_validator], verbose_name="domain name", ), ) ]
[]
[]
[]
archives/097475_hansberger.zip
hansberger/contrib/sites/migrations/0003_set_site_domain_and_name.py
""" To understand why this file is here, please read: http://cookiecutter-django.readthedocs.io/en/latest/faq.html#why-is-there-a-django-contrib-sites-directory-in-cookiecutter-django """ from django.conf import settings from django.db import migrations def update_site_forward(apps, schema_editor): """Set site domain and name.""" Site = apps.get_model("sites", "Site") Site.objects.update_or_create( id=settings.SITE_ID, defaults={ "domain": "example.com", "name": "HansBerger", }, ) def update_site_backward(apps, schema_editor): """Revert site domain and name to default.""" Site = apps.get_model("sites", "Site") Site.objects.update_or_create( id=settings.SITE_ID, defaults={"domain": "example.com", "name": "example.com"} ) class Migration(migrations.Migration): dependencies = [("sites", "0002_alter_domain_unique")] operations = [migrations.RunPython(update_site_forward, update_site_backward)]
[]
[]
[]
archives/097475_hansberger.zip
hansberger/contrib/sites/migrations/__init__.py
""" To understand why this file is here, please read: http://cookiecutter-django.readthedocs.io/en/latest/faq.html#why-is-there-a-django-contrib-sites-directory-in-cookiecutter-django """
[]
[]
[]
archives/097475_hansberger.zip
hansberger/datasets/__init__.py
[]
[]
[]
archives/097475_hansberger.zip
hansberger/datasets/admin.py
from django.contrib import admin from .models import TextDataset, EDFDataset admin.site.register(TextDataset) admin.site.register(EDFDataset)
[]
[]
[]
archives/097475_hansberger.zip
hansberger/datasets/apps.py
from django.apps import AppConfig class DatasetsConfig(AppConfig): name = 'datasets' def ready(self): import datasets.signals # noqa
[]
[]
[]
archives/097475_hansberger.zip
hansberger/datasets/forms.py
from django import forms from .models import Dataset, TextDataset, EDFDataset def dataset_name_unique_check(name, research): return bool(Dataset.objects.filter( research__slug=research.slug, name=name ).first()) class DatasetCreationMixin: def __init__(self, *args, **kwargs): research = kwargs.pop('research') super().__init__(*args, **kwargs) self.fields['research'].initial = research def clean(self): cleaned_data = super().clean() name = cleaned_data.get("name") research = cleaned_data.get("research") if dataset_name_unique_check(name, research): self.add_error("name", "A dataset with this name already exists.") raise forms.ValidationError("A dataset with this name already exists.") class Meta: widgets = {'research': forms.HiddenInput} class TextDatasetCreationForm(DatasetCreationMixin, forms.ModelForm): class Meta(DatasetCreationMixin.Meta): model = TextDataset fields = [ 'name', 'description', 'source', 'research', 'transpose', 'values_separator_character', 'identity_column_index', 'header_row_index', ] class EDFDatasetCreationForm(DatasetCreationMixin, forms.ModelForm): class Meta(DatasetCreationMixin.Meta): model = EDFDataset fields = [ 'name', 'description', 'source', 'research', ]
[]
[]
[]
archives/097475_hansberger.zip
hansberger/datasets/migrations/0001_initial.py
# Generated by Django 2.0.13 on 2019-06-27 17:04 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('research', '0001_initial'), ] operations = [ migrations.CreateModel( name='Dataset', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=150)), ('slug', models.SlugField(max_length=150)), ('description', models.TextField(blank=True, max_length=500, null=True)), ('kind', models.CharField(choices=[('TEXT', 'Text'), ('EDF', 'EDF')], max_length=10)), ('source', models.FileField(upload_to='')), ('creation_date', models.DateTimeField(auto_now_add=True)), ('rows', models.PositiveIntegerField(blank=True, null=True)), ('cols', models.PositiveIntegerField(blank=True, null=True)), ], options={ 'verbose_name': 'dataset', 'verbose_name_plural': 'datasets', 'ordering': ['-creation_date'], }, ), migrations.CreateModel( name='EDFDataset', fields=[ ('dataset_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='datasets.Dataset')), ], bases=('datasets.dataset',), ), migrations.CreateModel( name='TextDataset', fields=[ ('dataset_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='datasets.Dataset')), ('values_separator_character', models.CharField(default=',', help_text='separator character of the\n values in the file', max_length=5)), ('identity_column_index', models.PositiveIntegerField(default=0, help_text='column number that identifies the\n progressive number of rows in the file')), ('header_row_index', models.PositiveIntegerField(default=0, help_text='row number that identifies the column in\n the file')), ('transpose', models.BooleanField(default=True, help_text="Transpose the text file's values so that features'\n values are laid out horizontally. If the input is a csv file, you might want\n to leave this box checked in.")), ], bases=('datasets.dataset',), ), migrations.AddField( model_name='dataset', name='research', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='datasets', related_query_name='dataset', to='research.Research'), ), migrations.AlterUniqueTogether( name='dataset', unique_together={('slug', 'research')}, ), ]
[]
[]
[]
archives/097475_hansberger.zip
hansberger/datasets/migrations/0002_auto_20190628_2017.py
# Generated by Django 2.0.13 on 2019-06-28 18:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('datasets', '0001_initial'), ] operations = [ migrations.AlterField( model_name='textdataset', name='header_row_index', field=models.PositiveIntegerField(blank=True, default=0, help_text='row number that identifies the column in\n the file'), ), ]
[]
[]
[]
archives/097475_hansberger.zip
hansberger/datasets/migrations/0003_auto_20190628_2018.py
# Generated by Django 2.0.13 on 2019-06-28 18:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('datasets', '0002_auto_20190628_2017'), ] operations = [ migrations.AlterField( model_name='textdataset', name='header_row_index', field=models.PositiveIntegerField(blank=True, default=0, help_text='row number that identifies the column in\n the file', null=True), ), ]
[]
[]
[]
archives/097475_hansberger.zip
hansberger/datasets/migrations/__init__.py
[]
[]
[]
archives/097475_hansberger.zip
hansberger/datasets/models/__init__.py
from .dataset import Dataset, DatasetKindChoice # noqa from .text_dataset import TextDataset # noqa from .edf_dataset import EDFDataset # noqa
[]
[]
[]
archives/097475_hansberger.zip
hansberger/datasets/models/dataset.py
from enum import Enum from abc import abstractmethod import scipy.spatial.distance as distance import numpy from django.db import models from django.utils.text import slugify from django.urls import reverse_lazy from research.models import Research class DatasetKindChoice(Enum): TEXT = "Text" EDF = "EDF" class Dataset(models.Model): name = models.CharField(max_length=150) slug = models.SlugField(db_index=True, max_length=150) description = models.TextField(max_length=500, blank=True, null=True) kind = models.CharField( max_length=10, choices=[(kind.name, kind.value) for kind in DatasetKindChoice] ) source = models.FileField() creation_date = models.DateTimeField(auto_now_add=True) research = models.ForeignKey( Research, on_delete=models.CASCADE, related_name='datasets', related_query_name='dataset' ) rows = models.PositiveIntegerField(blank=True, null=True) cols = models.PositiveIntegerField(blank=True, null=True) class Meta: ordering = ['-creation_date'] unique_together = (('slug', 'research')) verbose_name = "dataset" verbose_name_plural = "datasets" def __str__(self): return self.name def save(self, *args, **kwargs): if not self.id: self.slug = slugify(self.name) super().save(*args, **kwargs) def get_absolute_url(self): return reverse_lazy( 'datasets:dataset-detail', kwargs={ 'research_slug': self.research.slug, 'dataset_slug': self.slug, } ) def get_distance_matrix(self, metric): return distance_matrix(self.get_matrix_data(), metric) def get_correlation_matrix(self): return correlation_matrix(self.get_matrix_data()) def split_matrix(self, window, overlap): # returns a generator matrix = numpy.array(self.get_matrix_data()) cols = len(matrix[0]) step = window - overlap windows = 1 + (cols - window) // step for i in range(windows): tmp = matrix[:, window*i - overlap*i: window*(i+1) - overlap*i] yield tmp @abstractmethod def get_matrix_data(self): pass def distance_matrix(matrix, metric): return distance.squareform(distance.pdist( numpy.array(matrix).transpose(), metric=metric )) def correlation_matrix(matrix): out = numpy.corrcoef(numpy.array(matrix)) out = numpy.vectorize(lambda x: 1-x)(out) numpy.fill_diagonal(out, 0) return out
[]
[]
[]
archives/097475_hansberger.zip
hansberger/datasets/models/edf_dataset.py
import numpy as np import pyedflib import matplotlib.pyplot as plt from matplotlib.collections import LineCollection import mpld3 from .dataset import Dataset, DatasetKindChoice def stackplot(marray, seconds=None, start_time=None, ylabels=None): """ will plot a stack of traces one above the other assuming marray.shape = numRows, numSamples """ tarray = np.transpose(marray) stackplot_t(tarray, seconds=seconds, start_time=start_time, ylabels=ylabels) def stackplot_t(tarray, seconds=None, start_time=None, ylabels=None): """ will plot a stack of traces one above the other assuming tarray.shape = numSamples, numRows """ data = tarray numSamples, numRows = tarray.shape # data = np.random.randn(numSamples,numRows) # test data # data.shape = numSamples, numRows if seconds: t = seconds * np.arange(numSamples, dtype=float)/numSamples # import pdb # pdb.set_trace() if start_time: t = t+start_time xlm = (start_time, start_time+seconds) else: xlm = (0, seconds) else: t = np.arange(numSamples, dtype=float) xlm = (0, numSamples) ticklocs = [] ax = plt.subplot(111) plt.xlim(*xlm) # xticks(np.linspace(xlm, 10)) dmin = data.min() dmax = data.max() dr = (dmax - dmin)*0.7 # Crowd them a bit. y0 = dmin y1 = (numRows-1) * dr + dmax plt.ylim(y0, y1) segs = [] for i in range(numRows): segs.append(np.hstack((t[:, np.newaxis], data[:, i, np.newaxis]))) # print "segs[-1].shape:", segs[-1].shape ticklocs.append(i*dr) offsets = np.zeros((numRows, 2), dtype=float) offsets[:, 1] = ticklocs lines = LineCollection(segs, offsets=offsets, transOffset=None, ) ax.add_collection(lines) # set the yticks to use axes coords on the y axis ax.set_yticks(ticklocs) # ax.set_yticklabels(['PG3', 'PG5', 'PG7', 'PG9']) # if not plt.ylabels: plt.ylabels = ["%d" % ii for ii in range(numRows)] ax.set_yticklabels(ylabels) plt.xlabel('time (s)') class EDFDataset(Dataset): def save(self, *args, **kwargs): self.kind = DatasetKindChoice.EDF.value super().save(*args, **kwargs) self.rows = len(self.get_matrix_data()) self.cols = len(self.get_matrix_data()[0]) super().save(*args, **kwargs) def edf_to_matrix(self): data = self.dataframe height = data.signals_in_file ret = [] for i in range(height): ret.append(data.readSignal(i).tolist()) return ret def plot_EDF(self): data = self.dataframe n = data.signals_in_file signal_labels = data.getSignalLabels() n_min = data.getNSamples()[0] sigbufs = [np.zeros(data.getNSamples()[i]) for i in np.arange(n)] for i in np.arange(n): sigbufs[i] = data.readSignal(i) if n_min < len(sigbufs[i]): n_min = len(sigbufs[i]) n_plot = np.min((n_min, 2000)) sigbufs_plot = np.zeros((n, n_plot)) for i in np.arange(n): sigbufs_plot[i, :] = sigbufs[i][:n_plot] stackplot(sigbufs_plot[:, :n_plot], ylabels=signal_labels) @property def dataframe(self): return pyedflib.EdfReader(self.source.path) @property def plot(self): plt.figure(figsize=(10, 5)) self.plot_EDF() figure = plt.gcf() html_figure = mpld3.fig_to_html(figure, template_type='general') plt.close() return html_figure def get_matrix_data(self): return self.edf_to_matrix()
[]
[]
[]
archives/097475_hansberger.zip
hansberger/datasets/models/text_dataset.py
from django.db import models import pandas as pd import matplotlib.pyplot as plt import mpld3 from .dataset import Dataset, DatasetKindChoice class TextDataset(Dataset): values_separator_character = models.CharField(max_length=5, default=',', help_text="""separator character of the values in the file""") identity_column_index = models.PositiveIntegerField(default=0, help_text="""column number that identifies the progressive number of rows in the file""") header_row_index = models.PositiveIntegerField(default=0, help_text="""row number that identifies the column in the file""", blank=True, null=True) transpose = models.BooleanField(default=True, help_text="""Transpose the text file's values so that features' values are laid out horizontally. If the input is a csv file, you might want to leave this box checked in.""") def save(self, *args, **kwargs): self.kind = DatasetKindChoice.TEXT.value super().save(*args, **kwargs) matrix_data = self.get_matrix_data() self.rows = len(matrix_data) self.cols = len(matrix_data[0]) super().save(*args, **kwargs) @property def dataframe(self): return pd.read_csv( self.source.path, index_col=self.identity_column_index, sep=self.values_separator_character, header=self.header_row_index, ) @property def plot(self): self.dataframe.plot(figsize=(10, 5)) figure = plt.gcf() html_figure = mpld3.fig_to_html(figure, template_type='general') plt.close() return html_figure def get_matrix_data(self): if self.transpose: return self.dataframe.values.transpose().tolist() else: return self.dataframe.values.tolist()
[]
[]
[]
archives/097475_hansberger.zip
hansberger/datasets/signals.py
from django.dispatch import receiver from django.db.models import signals from .models import Dataset @receiver(signals.post_delete, sender=Dataset) def submission_delete(sender, instance, **kwargs): instance.source.delete(False)
[]
[]
[]
archives/097475_hansberger.zip
hansberger/datasets/urls.py
from django.urls import path from .views import ( TextDatasetCreateView, EDFDatasetCreateView, DatasetListView, DatasetDeleteView, DatasetDetailView ) app_name = 'datasets' urlpatterns = [ path('', view=DatasetListView.as_view(), name='dataset-list'), path('create/text/', view=TextDatasetCreateView.as_view(), name='text-dataset-create'), path('create/edf/', view=EDFDatasetCreateView.as_view(), name='edf-dataset-create'), path('<slug:dataset_slug>/', view=DatasetDetailView.as_view(), name='dataset-detail'), path('<slug:dataset_slug>/delete/', view=DatasetDeleteView.as_view(), name='dataset-delete'), ]
[]
[]
[]
archives/097475_hansberger.zip
hansberger/datasets/views.py
from django.views.generic import ( CreateView, DetailView, ListView, DeleteView, ) from django.shortcuts import get_object_or_404 from django.urls import reverse_lazy from .models import Dataset, TextDataset, EDFDataset from research.models import Research from .forms import TextDatasetCreationForm, EDFDatasetCreationForm class DatasetCreateMixin: def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['research'] = get_object_or_404( Research, slug=self.kwargs['research_slug'] ) return context def get_form_kwargs(self): kwargs = super().get_form_kwargs() self.research = get_object_or_404( Research, slug=self.kwargs['research_slug'] ) kwargs['research'] = self.research return kwargs def form_valid(self, form): self.dataset = form.save() return super().form_valid(form) class TextDatasetCreateView(DatasetCreateMixin, CreateView): model = TextDataset form_class = TextDatasetCreationForm def get_success_url(self): return reverse_lazy('datasets:dataset-detail', kwargs={ 'research_slug': self.kwargs['research_slug'], 'dataset_slug': self.dataset.slug }) class EDFDatasetCreateView(DatasetCreateMixin, CreateView): model = EDFDataset form_class = EDFDatasetCreationForm def get_success_url(self): return reverse_lazy('datasets:dataset-detail', kwargs={ 'research_slug': self.kwargs['research_slug'], 'dataset_slug': self.dataset.slug }) class DatasetDetailView(DetailView): model = Dataset context_object_name = 'dataset' template_name = "datasets/dataset_detail.html" def get_object(self): my_dataset = (TextDataset.objects.filter( research__slug=self.kwargs['research_slug'], slug=self.kwargs['dataset_slug'] ).first() or EDFDataset.objects.filter( research__slug=self.kwargs['research_slug'], slug=self.kwargs['dataset_slug'] ).first()) return my_dataset class DatasetListView(ListView): model = Dataset context_object_name = 'datasets' paginate_by = 10 template_name = "research/datasets/dataset_list.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['research'] = self.research return context def get_queryset(self): self.research = get_object_or_404( Research, slug=self.kwargs['research_slug'] ) datasets = Dataset.objects.filter( research=self.research ).only('name', 'creation_date', 'slug', 'research') return datasets class DatasetDeleteView(DeleteView): model = Dataset context_object_name = 'dataset' def get_object(self): return get_object_or_404( Dataset, research__slug=self.kwargs['research_slug'], slug=self.kwargs['dataset_slug'] ) def get_success_url(self): return reverse_lazy( 'datasets:dataset-list', kwargs={'research_slug': self.kwargs['research_slug']} )
[]
[]
[]
archives/097475_hansberger.zip
hansberger/research/__init__.py
[]
[]
[]
archives/097475_hansberger.zip
hansberger/research/admin.py
from django.contrib import admin from .models import Research admin.site.register(Research)
[]
[]
[]
archives/097475_hansberger.zip
hansberger/research/apps.py
from django.apps import AppConfig class ResearchConfig(AppConfig): name = 'research' def ready(self): import research.signals # noqa
[]
[]
[]
archives/097475_hansberger.zip
hansberger/research/forms.py
from django import forms from .models import Research def research_name_unique_check(name): return bool(Research.objects.filter(name=name).first()) class ResearchCreationForm(forms.ModelForm): def clean(self): cleaned_data = super(ResearchCreationForm, self).clean() name = cleaned_data.get("name") if research_name_unique_check(name): self.add_error("name", "A research with this name already exists.") raise forms.ValidationError("A research with this name already exists.") class Meta: model = Research fields = ['name', 'description']
[]
[]
[]
archives/097475_hansberger.zip
hansberger/research/migrations/0001_initial.py
# Generated by Django 2.0.13 on 2019-06-27 17:04 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Research', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=150)), ('slug', models.SlugField(max_length=150, unique=True)), ('description', models.TextField(blank=True, max_length=500, null=True)), ('creation_date', models.DateTimeField(auto_now_add=True)), ], options={ 'verbose_name': 'research', 'verbose_name_plural': 'research', 'ordering': ['-creation_date'], }, ), ]
[]
[]
[]
archives/097475_hansberger.zip
hansberger/research/migrations/__init__.py
[]
[]
[]
archives/097475_hansberger.zip
hansberger/research/models.py
from django.db import models from django.utils.text import slugify from django.urls import reverse_lazy class Research(models.Model): name = models.CharField(max_length=150) slug = models.SlugField(db_index=True, unique=True, max_length=150) description = models.TextField(max_length=500, blank=True, null=True) creation_date = models.DateTimeField(auto_now_add=True) class Meta: app_label = 'research' ordering = ['-creation_date'] verbose_name = 'research' verbose_name_plural = 'research' def __str__(self): return self.name def save(self, *args, **kwargs): if not self.id: self.slug = slugify(self.name) super(Research, self).save(*args, **kwargs) def get_absolute_url(self): return reverse_lazy( 'research:research-detail', kwargs={'research_slug': self.slug} )
[]
[]
[]
archives/097475_hansberger.zip
hansberger/research/signals.py
# TODO
[]
[]
[]
archives/097475_hansberger.zip
hansberger/research/tests.py
from django.test import TestCase # Create your tests here.
[]
[]
[]
archives/097475_hansberger.zip
hansberger/research/urls.py
from django.urls import path from .views import ( ResearchCreateView, ResearchDeleteView, ResearchDetailView, ResearchListView ) app_name = 'research' urlpatterns = [ path("", view=ResearchListView.as_view(), name="research-list"), path("create/", view=ResearchCreateView.as_view(), name="research-create"), path("<slug:research_slug>/", view=ResearchDetailView.as_view(), name="research-detail"), path("<slug:research_slug>/delete/", view=ResearchDeleteView.as_view(), name="research-delete"), ]
[]
[]
[]
archives/097475_hansberger.zip
hansberger/research/views.py
from django.views.generic import ( CreateView, DeleteView, DetailView, ListView, ) from django.urls import reverse_lazy from .models import ( Research ) from .forms import ( ResearchCreationForm ) class ResearchCreateView(CreateView): model = Research form_class = ResearchCreationForm template_name = "research/research_form.html" class ResearchDeleteView(DeleteView): model = Research context_object_name = 'research' slug_field = 'slug' slug_url_kwarg = 'research_slug' success_url = reverse_lazy('research:research-list') template_name = "research/research_confirm_delete.html" class ResearchDetailView(DetailView): model = Research context_object_name = 'research' slug_field = 'slug' slug_url_kwarg = 'research_slug' template_name = "research/research_detail.html" class ResearchListView(ListView): model = Research context_object_name = 'research_list' queryset = Research.objects.all().values('name', 'creation_date', 'slug') template_name = "research/research_list.html"
[]
[]
[]
archives/097475_hansberger.zip
hansberger/routing.py
from channels.auth import AuthMiddlewareStack from channels.routing import ProtocolTypeRouter, URLRouter import analysis.routing application = ProtocolTypeRouter({ # (http->django views is added by default) 'websocket': AuthMiddlewareStack( URLRouter( analysis.routing.websocket_urlpatterns ) ), })
[]
[]
[]
archives/097475_hansberger.zip
hansberger/users/__init__.py
[]
[]
[]
archives/097475_hansberger.zip
hansberger/users/adapters.py
from typing import Any from allauth.account.adapter import DefaultAccountAdapter from allauth.socialaccount.adapter import DefaultSocialAccountAdapter from django.conf import settings from django.http import HttpRequest class AccountAdapter(DefaultAccountAdapter): def is_open_for_signup(self, request: HttpRequest): return getattr(settings, "ACCOUNT_ALLOW_REGISTRATION", True) class SocialAccountAdapter(DefaultSocialAccountAdapter): def is_open_for_signup(self, request: HttpRequest, sociallogin: Any): return getattr(settings, "ACCOUNT_ALLOW_REGISTRATION", True)
[ "HttpRequest", "HttpRequest", "Any" ]
[ 310, 494, 520 ]
[ 321, 505, 523 ]
archives/097475_hansberger.zip
hansberger/users/admin.py
from django.contrib import admin from django.contrib.auth import admin as auth_admin from django.contrib.auth import get_user_model from hansberger.users.forms import UserChangeForm, UserCreationForm User = get_user_model() @admin.register(User) class UserAdmin(auth_admin.UserAdmin): form = UserChangeForm add_form = UserCreationForm fieldsets = (("User", {"fields": ("name",)}),) + auth_admin.UserAdmin.fieldsets list_display = ["username", "name", "is_superuser"] search_fields = ["name"]
[]
[]
[]
archives/097475_hansberger.zip
hansberger/users/apps.py
from django.apps import AppConfig class UsersAppConfig(AppConfig): name = "hansberger.users" verbose_name = "Users" def ready(self): try: import users.signals # noqa F401 except ImportError: pass
[]
[]
[]